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December 2, 2011
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Domain and Approach
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Topic

This text provides a unified basis of dynamic decision making under
uncertainty & incomplete knowledge. It designs & applies strategy� that

converts available knowledge� into an optional action�,

concerns a system�, i.e. a part of the World,

faces consistently an inevitable uncertainty�,

respects decision-maker’s constraint�s,

meets decision-maker’s aim�s as best as possible.
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Research and Application Domains

The topic description indicates an extreme width of the addressed
problems. Consequently, it deals with an extreme range of

research and application domains covering control engineering
[Ast70], artificial intelligence [San99], pattern recognition [Rip97],
economics [Sta00], social sciences [Arr95];

methodologies and techniques like statistical decision making
[Wal50, Sav54, DeG70, Ber85], fuzzy decision making [Tri00],
domain-specific solutions [SB01], transition of statistical physics
technique to economical domain [RM00];

synonyms and notation variations, for instance, action� vs. decision
vs. input�; output� vs. response.
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What Is Specific?

The adopted solution falls within Bayesian decision-making paradigm
[Wal50, DeG70, Ber85]. The text is specific by its

stress on dynamic decision making requiring design� of strategies
generating sequences of actions;

systematic use of probabilistic description to all basic DM elements�;

top down presentation stressing a common logical structure in solving
rather diverse problems;

constructive, problem-driven, approach;

vocabulary combining terms from various domains [KBG+06].
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Introduction
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This part

provides practical examples of decision making (DM�) that serve as
an informal introduction into the general problem addressed;

characterises the thought audience & acknowledgements.
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Examples of DM

Example 1 (On Enrolling at this Course)

aim� to learn something interesting, to get credits

system� teacher, school mates, the personal future

action� {enter, not-enter} this course

knowledge� syllabus, gossip of older students

ignorance� true content of the course

uncertainty� degree of simplicity, intellectual state of the teacher,
personal ability to perceive

constraint� spent time, brain effort, schedule

dynamics� one-shot decision with long-term consequences like
lost time, usefulness in future life. . .
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Examples of DM

Example 2 (Estimation of Table Length)

aim� to provide an information serving for the table
displacement using either a small lift or staircase

system� the table and space around it

action� the upper estimate of the table length

knowledge� a personal guess, available observation�s

ignorance� the true length of the table

uncertainty� measurement errors

constraint� spent time, the tape precision

dynamics� one-shot decision with longer term consequences like
the lost time and energy on measurements or
a trial table displacement. . .
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Examples of DM

Example 3 (Control of Metal Thickness)

aim�: to get the metal of a constant thickness
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Rolled Metal

Figure: Rolled metal
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System: Rolling Mill

Figure: Rolling mill
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Actions: Rolling Force, Rolling Speed, Rolling Tensions,
. . . (∼ 300 options)

Figure: Operator’s actions
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Other DM Elements

knowledge� observation�s – input-output thickness, speeds,
tensions . . . (40 channels) – and personal knowledge
(at least 6 months’ learning)

ignorance� detailed properties of the mill and of the rolled material
(the mill more hammers than rolls)

uncertainty� measurement errors, eccentricity of rolls, responses of
actuators to commands, mill aging, . . .

constraint� the applied forces and tensions and their changes,
control period (about 10 ms), precision of
the thickness- and pressure-measuring sensors

dynamics� time-delay between the measured input thickness and
applied rolling force (more than 20 control periods),
dynamics of actuators.
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Examples of DM

Example 4 (Control of the Traffic in Town)

aim� to exploit fully the available capacity of town roads,
for instance, to minimise the average travelling time
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System: a Traffic Region in Town

Figure: Traffic system
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Action: Transformation of the System

Figure: Specific traffic system
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. . . to the System

Figure: Radical solution of the traffic problem
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... or Varying Traffic Lights and Signs

Figure: Operators of traffic system

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 21 / 393



Other DM Elements

knowledge� off-line statistical data, observation�s of the traffic
intensity & road occupancy, visual inspections, Figure 7

ignorance� the car flow evolving over the space & time, queue lengths

uncertainty� measurement errors, un-measured quantities, e.g.,
the number of parking cars, weather, congestions,
behaviour of drivers,. . .

constraint� the available capacity of the transportation system,
priorities of public transportation, safety regulations,
information systems, complexity of evaluations, . . .

dynamics� the traffic is a random spatially-distributed process,
light changes at single cross-road have far reaching
influence, recall “green wave” and its violation,
consequences of even a minor accident,
priorities of state-guests,. . .
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Audience and Supporters

In spite of the (mis)used mathematics, this is not mathematical text.

A basic course of mathematical analysis suffices for understanding of
the explanation logic.

On the other hand, the text touches quite deep formulation concepts
so that the proper audience consists of specialising Master and PhD
students as well as researchers who are interested in criticism,
development and non-trivial applications of decision making theory.

The text reflects decades of the first author work and as well as of the
explicitly listed contributors. To name all people and institutions who
influenced the text would be extremely long and boring for audience.
Current and former colleagues know that their work is appreciated.
This allows us to name only grants that supported this version,
MŠMT 1M0572, GA ČR 102/08/0567.
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Basic Notions
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On Notions, Notations and Conventions

This part summarises basic notions and notations used throughout.

The conventions listed here are mostly followed in this work. If an
exception is necessary it is introduced at the place of its validity.

The respective notions are introduced within the text when they are
used for first time. They are emphasised.

Jumps to majority of definitions are possible in the PDFLaTeX
version. Thus, a reader can scan this part in a rather shallow way.

The presentation starts with general conventions. The core of this
part provides briefly characterised basic notions. Then, the used
vocabulary is commented.
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Notions and Notations

pd probability density, f, means Radon-Nikodým derivative of a
probabilistic measure [Rao87b].
The argument name determines meaning of the pd.

mappings are marked by sf fonts.

expectation is denoted E or Ef to stress the pd f used.

set X ? denotes the range of X .

subset X? is a part of X ?.

cardinality |X ?| denotes the number of members in the set X ?.

vector length `X means the number of entries in the vector X .

defining equality ≡ is the equality by definition.

timed quantity Xt is a quantity� X at the discrete time instant
labelled by t ∈ t? ≡ {1, . . . , h}.
horizon h ≤ ∞ concerns decision, prediction, control . . .

time index Xt;i is an ith entry of the array X at time t.
The semicolon in the subscript stresses that the first index is time.
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Notions and Notations

sequence X k:l denotes the sequence (Xi )
l
i=k .

X k:l is empty sequence adding nothing to prior knowledge� if l < k.
X t ≡ X 1:t ≡ (Xi )

t
i=1 is the sequence from the time moment 1 till t.

support supp [ f(X )] is the subset X? of X ? on which f(X ) > 0.

quantity is a multivariate (measurable) mapping. Its detailed
description is mostly unimportant.
This notion corresponds with random variable used in probability
theory, [Ren72]. The adopted name stresses that probability serves us
as a DM� tool and not as a primary object. It also stresses our
inclination to deal with a numerical description of physical entities.

realisation is a quantity value for a fixed argument.
Often, the quantity� and its realisation� are not distinguished. The
context implies the proper alternative.
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Interface of the Theory to Reality

Agreement 1 (Connections to Reality)

Physical connections of DM elements� to the real world

sensors,

transmission lines,

actuators,

. . .

are taken here as a part of the physical system dealt with.

All considered quantities and mappings are mathematical entities living in
an abstract calculating machine.
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Abstraction of DM Problem
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DM Concerns Interactions

In DM, at least two entities interacts: system� and decision maker�.
system is a part of the World that is of interest to a decision maker�
who should either describe or influence it. arxsimul

The system� is specified with respect to the aim� of the decision
maker� and with respect to its available tools. In other words, the
penetrable boundaries of the system are implied by the decision task.

decision maker is a person or mechanism who has to select and apply
action�s.
To avoid gender offences a decision maker is referred by it.
A compound decision maker� is possible.

The presented normative theory should help the decision maker� to
select the proper, from its view-point, action� among alternatives.
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Action, Behaviour and Aim

action ≡ decision, A ∈ A?, is the value of a quantity� that can be
directly chosen by the decision maker� for reaching its aim�.
Terms “action” and “decision” are taken as synonyms.
A decision task arises iff there are several actions available, |A?| > 1.
The action� is selected with the intention to reach a specific aim� as
closely as possible.

behaviour , B ∈ B?, consists of realisation�s of all quantities
considered by the decision maker� in the addressed decision-making
task within the time span determined by the horizon� of interest.

aim specifies the desired behaviour� of the closed decision loop
formed by the decision strategy� and system�.
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Strategy, Decision Rule and Feedback

The described theory intends to support any (rational) decision maker� in
its choice of appropriate sequence of action�s for any foreseen realisation�

of the behaviour�. Thus, it has to design strategy�.

strategy ≡ decision strategy S is a sequence of mappings from the
behaviour set B? to the action set A?, S ≡ (St : B? → A?t )t∈t? .

decision rule St is a mapping St : B? → A?t that assigns the action�

At ∈ At
? to the behaviour� B ∈ B? at time t.

feedback means that the strategy� maps behaviours on actions, which
generally influence the behaviour.
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Knowledge and Ignorance

An applicable strategy� can process only the knowledge� available:

knowledge ≡ decision knowledge KA? ∈ KA?
? is the part of the

behaviour B ∈ B? available to the decision maker� for the choice of
the action� A ∈ A?. The abbreviation Kt−1 = KA?t is used.
Time shift stresses the inevitable time-delay in gathering knowledge
and possibility to use it for DM�.
For example, if just data values D ∈ D? are available for constructing
an estimate Θ̂ of an unknown quantity� Θ ∈ Θ?, then the knowledge�

is KΘ̂? ≡ D. Often, the knowledge� includes the observed past.

ignorance ≡ decision ignorance GA? ∈ G?A? is the part of the behaviour
B ∈ B? unavailable to the decision maker� for the choice of the action

� A ∈ A?. The abbreviation Gt = GA?t is used.
An estimated quantity Θ belongs to the ignorance� GΘ̂ of the

estimate Θ̂.
Often, ignorance� contains yet unobserved future.
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Knowledge Accumulation

Action At ∈ At
? splits behaviour� B into ignorance� Gt & knowledge� Kt−1

behavior = B = (Gt ,At ,Kt−1) = (ignorance, action, knowledge). (1)

A single realisation� B splits differently with respect to action�s At ∈ At
?,

Aτ ∈ Aτ
? with different knowledge� Kt−1 6= Kτ−1 and, consequently, different

ignorance� Gt 6= Gτ .

B = (Gt ,At ,Kt−1) = (Gτ ,Aτ ,Kτ−1).

An accumulation of the knowledge� and reduction of the ignorance� via sequential
observations in the increasing time t ∈ t? formalises the notion

observation ∆t ∈ ∆t
? consists of quantities included in the ignorance� Gt of

At and in the knowledge� Kt of At+1.

Often, ∆t = Yt = the system output� at time t.
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Informationally Causal Decision Rules and Strategies

The applicable decision rules have to be informationally causal.

causal decision rule St is a mapping that assigns the action� At ∈ At
?

to its knowledge� Kt−1 ∈ Kt−1
?.

The action� At generated by a causal decision rule� St is uninfluenced
by the related ignorance� Gt .

estimator is a causal decision rule� St : K?t−1 → X̂ ?
t that assigns an

estimate Θ̂t of an unknown quantity� Θt ∈ Θt
? to the knowledge�

Kt−1.

causal strategy S ≡ (St : Kt−1 → A?t )t∈t? is a sequence made of
causal decision rules.

We deal with causal decision rules and causal strategies only. Thus, the
term “causal” can mostly be dropped.
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Our Central Topic Is Design of DM Strategy

design selects a decision rule� or a strategy�.

static design selects a single decision rule�.

dynamic design chooses a strategy�.

dynamics means any circumstance that calls for the dynamic design�.

designer is a person (or a group) who makes the strategy selection.
Authors and readers of this text are supposed to be designers and the
term “we” used within the text is to be read: we designers.
The designers work for the users whose aims should be reached by
using the strategy� designed.
Decision makers, designers and users are mostly identified in this text.
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Engineers Solve DM in Its Entirety

DM ≡ decision making means the design� and the use of a decision
rule� or a strategy�.

The quest for applicability forces us to select

admissible strategy S ≡ (St)t∈t? , which
• is causal, i.e. S ≡ (St)t∈t? ≡ (St : K?t−1 → A?t )t∈t?

• meets a given constraint�.

constraint is any circumstance restricting the set of strategies S?

among which the designer� can choose.

physical constraints limit actions (A?t )t∈t? .

informational constraints determine knowledge� (Kt−1)t∈t? available
for selection of actions (At)t∈t? and ignorance� (Gt)t∈t? considered
but unavailable for the action choice.
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Practically Admissible Strategies

Practically, constraints on complexity of the strategy� have to be respected.

practically admissible strategy is an admissible strategy� that respects
constraint� limiting the complexity of the DM.

The complexity is considered with respect to the computational resources
(computational time and memory used) available at the design and
application stages.

The majority of discussed problems in which the complexity
constraints play a role are computationally hard in terms of computer
sciences [Gol08]. An intuitive understanding of the computational
complexity suffices to us.
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Key Obstacle: DM Faces Uncertainty

uncertainty occurs if the strategy� S does not determine uniquely the
behaviour� B ∈ B?. Then, for a fixed S, there is a bijective mapping

W(S, ·) : N? → B?. (2)

The argument N ∈ N? is called uncertainty.
For DM�, uncertainties that for a fixed strategy� S lead to the same
behaviour� are equivalent. This allows us to consider bijective W(S, ·)
only.

uncertain behaviour arises if the uncertainty set N? 6= ∅.
The DM� uncertainty is delimited by fixing the system�, the decision
maker� and the set of admissible strategies S?.

Uncertainty is permanently a part of the ignorance�.

An unknown quantity� Θ ∈ Θ? in behaviour� makes it uncertain in
the operationally same way as an external unobserved noise.

Uncertainty covers incomplete knowledge, vague preferences of the
decision maker�, randomness, etc.
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Comments on Vocabulary

The used vocabulary has various counter-parts, for instance,

input ≡ system input, U ∈ U?
t , is an action�, which is supposed to

influence ignorance� Gt .

A manipulated valve position influencing a fluid flow is the input�.
An estimate Θ̂ of an unknown quantity� Θ is an action� that is not the
input. The estimate describes the system� but has no influence on it.

output ≡ system output Y ∈ Y ? is an observable quantity� that
informs the decision maker� about the behaviour�. To be or not to be
output or input is relative. A pressure measured in a heated system�

is an output�. A pressure applied to a system is an input�.

controller is a strategy� assigning the input� Ut to knowledge�Kt−1.
The proportional controller with a proportionality constant C is a
causal control strategy� (K?t−1 ≡ Y ?

t−1 → U?
t : Ut = −CYt−1)t∈t? .
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Formalisation of DM
Under Uncertainty
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Quest for Normative Theory of DM Under Uncertainty

This part summaries the design principle we exploit in solving
decision-making tasks.

Recall: DM theory should help the decision maker� to opt for an
action�. The option concerns either a description of a system� or an
influence on it.

The presentation describes a general way how to understand and face
uncertainty� that causes incomplete ordering of strategies even when
preferential ordering� of possible behaviours is complete.

The complete ordering� of strategies, harmonised with the preferential
ordering� of behaviours, is then proposed.
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Ordering of Behaviours

A DM design� makes sense if the decision maker� prefers some behaviours.

preferential ordering of the decision maker� is ordering 4B? of
behaviours B ∈ B?.
It is the relation 4B? on pairs

(
aB, bB

)
∈ B? × B?

aB 4B?
bB reads aB is preferred against bB. (3)

The desirable consistency of preferences restricts it to be transitive

( aB 4B?
bB ∧ bB 4B?

cB)⇒ aB 4B?
cB. (4)
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Completion of Behaviour Ordering

The preferential ordering� 4B? is generally a partial ordering as the
decision maker� is often unable or unwilling to compare all
behaviours. We shall counteract it by employing

preferential quantity , which is a part of ignorance� introduced with
the aim to get complete ordering of behaviours containing it.

This non-standard consideration allows us to assume that 4B? is

complete ordering of the behaviour set B? 4B? that is able to
compare preferentially any aB, bB ∈ B?: either aB 4B?

bB or
bB 4B?

aB. The ordering 4B? induces the strict ordering ≺B? and
the preferential equivalence ≈B?

aB ≺B?
bB ⇔ aB 4B?

bB ∧ ¬( bB 4B?
aB) (5)

aB ≈B?
bB ⇔ aB 4B?

bB ∧ bB 4B?
aB

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 44 / 393



Numerical Representation of Ordering

The algorithmic solution of DM� tasks, we aim at, is enabled by
constructing numerical representation of the preferential ordering�

4B? by a real-valued loss� Z.

loss Z : B? → (−∞,∞) quantifies the degree of the aim achievement
if it is strictly isotonic with the preferential ordering�, i.e.
aB ≺B?

bB ⇔ Z( aB) < Z( bB) and aB ≈B?
bB ⇔ Z( aB) = Z( bB).

The loss� measures a posteriori the quality of each realisation� B. The
smaller is the loss� value the better.
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Existence of Numerical Representation

The extended real line (−∞,∞) with the ordinary (complete) strict
ordering < has the topology generated by open intervals [Bou66]. It has a
countable <-dense subset of rational numbers: for any real pair a < b
there is c in the <-dense subset such that a < c < b. It is intuitively clear
that the loss� may exist if (B?,4) has a countable ≺B?-dense subset.
Proof of the following proposition can be found in [Deb54] or [Fis70].

Proposition 1 (Existence of the Loss)

If a countable ≺B?-dense set in (B?,4B?) exists then there is loss� Z
representing 4B?

aB ≺B?
bB ⇔ Z ( aB) < Z

(
bB
)
∧

aB ≈B?
bB ⇔ Z ( aB) = Z

(
bB
)
.
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Non-Uniqueness of Loss

The loss� Z(·) representing a preferential ordering� 4B? is not unique.

The freedom in selection of the loss� can be restricted in a meaningful
way, for instance, by requiring it to be continuous with respect to the
4B?-topology, e.g., [Fis70].

There is a danger that uniqueness of the loss� is obtained at too high
price: unnecessary additional assumptions may exclude meaningful
completions of preferences supplied by the user.

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 47 / 393



Complete Ordering of Strategies

DM� design consists of selecting the “best” strategy�
OS among

compared strategies form a subset S? ⊂ S? of admissible strategies
consisting of at least two strategies.

It means that there is a complete ordering� of compared strategies 4S? ,
which can be viewed as restriction of a complete ordering of all admissible
strategies from S?

ordering of strategies 4S? is interpreted

aS 4S?
bS⇔ aS is better than aS. (6)

4S? has to be harmonised with the preferential ordering� 4B? .
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Towards a Prescriptive DM Theory

The choice of the complete ordering of strategies� has ambition to be
prescriptive, as objective as possible. Thus, it has to be applicable to
any preferential ordering� numerically represented by the
corresponding loss�. It has to suit to all DM tasks differing in S? of
compared strategies�, which are subsets of the set of admissible
strategies S?.

The configuration of the decision maker� – system�, determining
behaviour� and its finer structure, is assumed to be fixed.

The complete ordering of strategies 4S? , will be represented by the
“expected” loss T.

The quotation marks at expectation are used temporarily. They serve
the discussion, which shows that, under widely acceptable conditions,
it has to be mathematical expectation of utility�.
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The Design Principle

The “expected” loss represents preferences among strategies. This
implies the design principle:

optimal design selects an admissible strategy� that leads to the
smallest value of the “expected” loss.

optimal strategy is a minimiser OS of the “expected” loss.
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Towards “Expected” Loss

We start with a preferential ordering� 4B? represented by a fixed loss� Z.

Substitution of the mapping (2), relating the strategy� and the
uncertainty� to the behaviour�, into the loss� Z converts the loss� into
a function ZS(N) of the strategy� S and uncertainty� N

ZS(N) ≡ Z(W(S,N)), S ∈ S?, N ∈ N?. (7)

Various strategies generate the set ZS? of functions of uncertainties

ZS? ≡ {ZS : N? → (−∞,∞), ZS(N) ≡ Z(W(S,N))}S∈S? . (8)
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Ordering of Strategies Orders Possible Loss Realisations

In quest for objectivity, we deal with a complete ordering� of all
admissible strategies

aS 4S?
bS⇔ aS is preferred againts bS, aS, bS ∈ S?. (9)

The complete ordering of strategies induces the complete ordering� of
functions from the set ZS? (8)

Z aS 4ZS?
Z bS ⇔ aS 4S?

bS. (10)

We assume that a numerical representation of 4ZS?
exists,

Proposition 1, i.e. a mapping T : ZS? → (−∞,∞) exists

Z aS 4ZS?
Z bS ⇔ T (Z aS) ≤ T (Z bS) . (11)

The equivalence (10) provides the numerical representation of the
strategy ordering 4S? via the functional T (11)

aS 4S?
bS⇔ T (Z aS) ≤ T (Z bS) . (12)
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Integral Representation of “Expectation”

The functional T, numerically representing ordering of strategies 4S?

via (12), is an “expectation” T of the loss� ZS(N) = Z(W(S,N)). It
is required to be universally applicable to any loss� Z(B), i.e. to any
preferential ordering� of behaviours 4B? . The “expectation” for a
specific preferential ordering� is then taken as the restriction of the
found T on the set (8) generated by a specific loss� and by compared
strategies�.

We express the functional T in an integral form. For it, we adopt
rather technical conditions. Essentially, the applicability to any
smooth loss� and a local version of “linearity” of T are required.
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Towards Integral Representation of “Expectation”

Requirement 1 (The “Expectation” Domain)

The “expectation” T acts on the union Z?S? of the sets ZS? (8) of
functions with a common uncertainty set N?

Z?S? ≡ ∪Z∈Z?ZS? . (13)

The set Z?S? is required to contain a subset of

test losses , which are zero out of a compact subset ∅ 6= N? of N? and
continuous on N?, where supremum norm defines the corresponding
topology allowing a meaningful definition of continuity.

The “expectation” is assumed to be a sequentially continuous, and
uniformly continuous functional on the test losses�. It is, moreover,
additive on losses with non-overlapping supports

T[Z1 + Z2] = T[Z1] + T[Z2] if Z1Z2 = 0, Z1, Z2 ∈ Z?S? .
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Integral Representation of “Expectation”

Technical Requirement 1 allows us to get an integral representation of the
“expectation” searched for. More exact formulation and proof of the
corresponding theorem as well as definitions of the adopted non-common
terms can be found in [Rao87b] (Theorem 5, Chapter 9).

Proposition 2 (Integral “Expectation” Form)

Under Requirement 1, the “expectation” T of Z ∈ S?S? reads

T[Z] =

∫
N?

U(Z(N),N)µ(dN), (14)

specified by a finite regular nonnegative Borel measure µ and by utility:

utility is the mapping U in (14). It satisfies U(0,N) = 0. It is
continuous in values of Z(·), almost everywhere (a.e.) on N?,
bounded a.e. on N? for each Z in the set of test losses�.
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On Conditions Leading to Integral Representation

The test losses� are widely applicable and their consideration
represents no practical restriction. The “expectation” is applicable
even out of this set of functions.

The continuity requirements on T are also widely acceptable.

The linearity of T on functions with non-overlapping support seems to
be sound. Indeed, any loss� Z ∈ Z?S? can be written as
Z = Zχω + Z(1− χω) ≡ Z1 + Z2, Z1Z2 = 0 with χω denoting an
indicator of a set ω ⊂ N? ⊂ N?. The indicator χω is a smooth
function that equals 1 within ω and it is zero outside of it.

The loss� “expected” on the set ω and its complement should sum to
the loss “expected” on the whole set of arguments.
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Universal Character of Utility U and Measure µ

The utility� U that shapes the original loss� allows the decision maker�
to express the attitude toward design consequences and their risks:
the decision maker� might be risk aware, prone, or indifferent [KR78].

The utility� U and the nonnegative measure µ are universal for the
whole set of test functions. U and µ are (almost) “objective”, i.e.
suitable for a range of decision tasks facing the same uncertainty.
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Ordering of Strategies vs. Preferential Behaviour Ordering

The introduced ordering of strategies 4S? has been up to now
unrelated to the preferential ordering 4B? of behaviours B ∈ B?.

What makes them reasonably harmonised?

We have to avoid undoubtedly bad orderings of strategies, which
select strategy leading surely to bad behaviour as the optimal one.

We are not aware another, generally applicable, harmonisation
requirement!
We specify below what bad strategies mean.
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Dominance Ordering

The set Z?S? (13) of functions of uncertainty� can be equipped with
the partial ordering

aZ(N) ≤ bZ(N), ∀N ∈ N?. (15)

The partial ordering (15) restricted on the subset ZS? (8) of the set
Z?S? (given by a fixed loss� Z) induces the partial dominance ordering�

4d
S? of strategies S ∈ S?

dominance ordering means that the strategy bS is dominated by the
strategy aS,

aS 4d
S?

bS iff Z aS(N) ≤ Z bS(N), ∀N ∈ N?. (16)

The strategy bS is strictly dominated by the strategy aS, aS ≺d
S?

bS if
the inequality (16) is sharp on a N? ⊂ N? with µ(N?) > 0, see (14).
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Dominated Strategies Are Bad

The optimal design� depends on the “expected” loss� T[ZS] chosen. Its
choice has to guarantee that unequivocally bad strategy must not be
chosen as the optimal strategy�.
Definitely, a strictly dominated strategy is accepted as bad one as it leads
to a higher loss� than another admissible strategy� irrespectively of the
uncertainty realisation.

Requirement 2 (Quest for Non-Dominance)

The expected loss� must be chosen so that the optimal design� performed
on any nontrivial (comparison allowing) subset S? of compared strategies�

(a subset of admissible strategies S?) must not take a strictly dominated
strategy as the optimal strategy�.
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Utility Must Be Isotonic

Proposition 3 (Isotonic “Expectation”)

Assume that there is a strategy� in S? for which the “expected” loss� is
finite. Then, Requirement 2 is fulfilled iff the “expectation” is strictly
isotonic with the strict dominance ordering� of strategies ≺d

S? .

Proof:
a) We prove by contradiction that strict isotonicity guarantees
non-dominance. Let T[Z] be strictly isotonic on its domain Z?S? (8) and
OS ∈ S? be a minimiser of the “expected” loss�. The minimiser gives
necessarily a finite value of the corresponding T[Z OS]. Let dS ∈ S?

dominate strictly OS. Then, because of the construction of OS via
minimisation, the strict dominance and the strictly isotonic nature of T,
we get the following contradictory inequality

T[Z OS(N)] ≤︸︷︷︸
minimum

T[Z dS(N)] <︸︷︷︸
strictly isotonic

T[Z OS(N)] <∞.
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Proof Continued

b) We prove by contradiction that the use of an “expectation” T that is
not strictly isotonic leads to the violation of Requirement 2. If T[ZS] is not
strictly isotonic on its domain ZS? (8) then there is a strategy aS ∈ S?

strictly dominated by the strategy dS ∈ S? such that

T[Z dS] ≥ T[Z aS].

If we restrict the set of strategies S? to the pair S? ≡ { dS, aS} then aS
can always be taken as the optimal strategy�. Thus, Requirement 2 is not
met with such “expectation” T.

Proposition 4 (Utility Must Be Increasing In Loss)

The optimal design� avoids dominated strategies iff the utility� in the
“expectation” (14) is increasing in its first argument.

Proof Non-negativity of the measure µ (14) makes the claim obvious.�
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Uncertainties in DM Have Random Structure

The “expectation” scaled by any positive factor preserves the
ordering, which represents. Thus, the measure µ (14) can be
normalised to probabilistic measure. This choice preserves the
constant utilities T[constant] = constant.

Back-substitution B = W(S,N) (2) into (14) gives

aS 4S?
bS⇔ T aS(Z) ≤ T bS(Z), aS, bS ∈ S?

TS(Z) =

∫
B?

U
(
Z(B),W−1(S,B)

)
µS( dB) (17)

where the non-negative probabilistic measure µS is image of the
measure µ under the mapping W(S, ·) (2).
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Let us Get Rid Off Measures and Utilities

The involved measures µS, S ∈ S? are assumed to have

Radon–Nikodým derivative (probability density pd�) fS(B) is defined
with respect to a product dominating measure denoted dB, [Rao87b].

In the treated cases, dB is either Lebèsgue or counting measure.

expectation� is then
ES[IS] =

∫
B?

IS(B)fS(B)dB = TS(Z). (18)

and it is determined by

closed loop model , which is the pd fS(B)
The expectation ES is applied to a strategy-dependent

performance index
IS(B) = U(Z(B),W−1(S,B)). (19)

traditional design considers (19) with a performance index I = IS
independent of the optimised strategy S ∈ S?.

objective expectation is the expectation (18) that serves to all DM�

tasks with a common uncertainty.

objective pd is the pd specifying the objective expectation.
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A Few Comments

Remark 1

Dependence of the performance index� on strategy� arises through the
non-standard second argument of utility�. This dependence does not
occur in the traditional design�. Its consideration is postponed to
Section 16, where it helps us to justify the fully probabilistic design.

The existence of pds is unnecessary but it helps us to deal with
simpler objects.

Mostly, the character of the dominating measure is unimportant and
we stick predominantly to the Lebèsgue-type notation.

According to our agreements on simplified notation, the pds f(N) and
f(B) are different functions.
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We Have Arrived to the Point Where Books on DM Start

formalised DM design (20)

optimal strategy�
OS ∈ Arg minS∈S? E[IS] with

admissible strategy� S ≡ (St : Kt−1 → At
?)t∈t?

performance index� IS : B? → (−∞,∞) evaluating
behaviour� B ≡ (Gt ,At ,Kt−1)

≡ (ignorance, action, knowledge)
expectation� ES[IS] ≡

∫
B? IS(B)fS(B) dB

closed loop model� fS : B? → [0,∞],
∫

B? fS(B) dB = 1.

traditional DM design coincides with the formalised DM design� for a
strategy-independent performance index� I = IS.
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The Formalisation Has THE Gap

We aim at the optimal design� but we can perform only

practically optimal design selects a practically admissible strategy�

giving the smallest value of the expected performance index� while
respecting limited computational resources during the design.

The optimal design� adapts simply to the choice of a strategy� of a
pre-specified complexity. It suffices to optimise over them.

Operational formal tools for practically optimal design� are
unavailable. It is not known how to make the optimal design� of a
pre-specified complexity.

Essentially, the lack of the answer to simple questions like: How to
find the best proportional controller made with 10 algebraic
operations available? is the main barrier of the applicability of the
theory describing the optimal design�.
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... Global Plan of Further Explanations

Auxiliary tools needed for solution of the optimisation (20) are
prepared, Sections 8, 9 and 10.

The general solution of the traditional DM design� of the optimal
strategy� is found, Section 11. It reveals the need for learning. Its
solution is summarised in Section 13.

Asymptotic properties of the design and learning are inspected in
Sections 12, 15.

General, fully probabilistic design (FPD�) allowing dependence of the
performance index� on strategy is introduced in Section 16 and solved
in Section 18. Among others, it provides tools for a realistic
construction of DM elements� used in design. This construction forms
an independent part of this text, which is finely structured before its
start.
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Decisive Optimisation Tools
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This part provides basic tools serving us for solving DM tasks.

Section 8 recalls elementary calculus with pd�s.

Section 9 summarises properties of conditional expectation we need.

The design relies of basic DM lemma, presented in Section 10. The
lemma also exemplifies the elements on which the design operates.
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Calculus with Pds

The pd� is the main technical tool we deal with. Here, the joint pd f of
B ≡ (α, β, γ) ∈ B? is connected to related pds.

joint pd f(α, β|γ) of α, β conditioned on γ is the pd on (α, β)?

projecting the joint pd f(B) ≡ f(α, β, γ) on the cross-section of B?

given by a fixed γ.

marginal pd f(α|γ) of α conditioned on γ is the pd on α? projecting
f(B) ≡ f(α, β, γ) on the cross-section of B? given by a fixed γ while
no information on β is available.

unconditional pd is formally obtained if just trivial condition is
considered. Then, the conditioning symbol | is dropped .
The pd f(α, β) is the joint pd� in a lower dimension. It is marginal pd

� of the pd f(α, β, γ) similarly as f(β).

conditionally independent quantities α and β, under the condition γ,
meet

f(α, β|γ) = f(α|γ)f(β|γ)⇔ f(α|β, γ) = f(α|γ). (21)
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Basic Operations with Pds

Proposition 5 (Calculus with Pds)

For any B ≡ (α, β, γ) ∈ B?, the following relations hold

non-negativity means that all variants of pds are non-negative.

normalisation means that all variants of pds have unit integral over
the domain of quantities before conditioning sign |.
chain rule for pds holds f(α, β|γ) = f(α|β, γ)f(β|γ).

marginalisation means f(β|γ) =
∫
α? f(α, β|γ) dα.

Bayes rule

f(β|α, γ) =
f(α|β, γ)f(β|γ)

f(α|γ)
=

f(α|β, γ)f(β|γ)∫
β? f(α|β, γ)f(β|γ) dβ

∝ f(α|β, γ)f(β|γ). (22)

proportionality ∝ is equality with an implicit presence of a unique
normalisation-determined factor independent of the pd’s argument
before the conditioning sign |.
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On Verification of Calculus with Pds’ Properties

Proof For motivation see [Pet81], a more precise and more technical
treatment exploits the measure theory [Rao87b]. An intermediate insight
can be gained by considering a loss� dependent only on a part of B or with
some parts of B “fixed by the condition”, [KHB+85]. �

Remark 2

The Bayes rule (22) is a simple consequence of previous formulas. Its
importance in this text cannot be exaggerated, cf. Propositions 14, 15.
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Pds of Transformed Quantities

Often, the pd� fΥ(β) of a multivariate image β = Υ(α) of the quantity α
with a given pd f(α) is needed.

Proposition 6 (Pds of Transformed Quantities)

The expectation EΥ[I(β)] =
∫
β? I(β)fΥ(β) dβ, acting on functions

I(β) : β? → (−∞,∞), coincides with the expectation

E[I(β)] =

∫
α?

I(Υ(α))f(α) dα iff∫
Υ(α?)

fΥ(Υ(α)) dΥ(α) =

∫
α?

f(α) dα,

for all measurable subsets α? ⊂ α?.

Proof It follows from the possibility to approximate any measurable
function by piece-wise constants. �
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Pds of Smoothly Transformed Quantities

Proposition 7 (Pds of Smoothly Transformed Quantities)

Let α be a real vector , α ≡ [α1, . . . , α`α ] and Υ = [Υ1, . . . ,Υ`α ] bijection
with finite continuous partial derivatives almost everywhere on α?

Jij (α) ≡ ∂Υi (α)

∂αj
, i , j = 1, . . . , `α, (23)

for all entries Υi of Υ and entries αj of α.
Then,

fΥ(Υ(α))|J(α)| = f(α), where (24)

| · | is absolute value of the argument determinant.

Proof Proposition describes substitutions in multivariate integrals; see,
for instance, [Rao87b, Jar84]. �
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Calculus with Expectation

It is useful to summarise basic properties of expectation. They
simplify formal manipulations.

For this text, it is sufficient to take the expectation in a naive way as
an integral weighted by the conditional pd f(·|γ). The textbook
[Rao87b] can be consulted for a rigourous treatment.

Properties are formulated for the conditional expectation. The
unconditional case is obtained by omitting the condition.

Note that whenever the expectation is applied to an array function V
it should be understood as the array of expectations [E(V )]i ≡ E(Vi ).

Elegant manipulations with expectations are sometimes dangerous as
the used pd is not obvious from the notation. Sometimes, explicit use
of arguments over which expectation is taken helps. In explanatorily
critical cases, integral expressions are used.

The symbol Ef is used to stress the expectation-defining pd.
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Useful Properties of Expectation

Proposition 8 (Basic Properties of E)

For arbitrary real functions aI(B), bI(B), B ∈ B? on which the conditional
expectation E[·|γ] is well defined, E[·|γ] has the following properties.

expectation linearity

E[α(γ) aI + β(γ) bI|γ] = α(γ)E[ aI|γ] + β(γ)E[ bI|γ]

for arbitrary real coefficients α, β depending at most on γ.

chain rule for expectation

E [E[·|γ, ζ]|γ] = E[·|γ] (25)

for an arbitrary additional condition ζ.

Proof The definition and integral expression provides the results. �
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Moments and Jensen Inequality

Proposition 9 (Moments and Jensen Inequality)

conditional covariance of a vector α
cov[α|γ] ≡ E [(α− E[α|γ])(α− E[α|γ])′|γ] is related to the
non-central moments through the formula

cov[α|γ] = E[αα′|γ]− E[α|γ]E[α′|γ], ’ is transposition. (26)

Jensen inequality bounds expectation of a convex function
Iγ : α? → (−∞,∞)

E[Iγ(α)|γ] ≥ Iγ (E[α|γ]) . (27)

Proof All statements can be verified by using the integral expression of
the expectation. Proof of the Jensen inequality can be found, e.g., in
[Vaj82]. �
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Basic DM Lemma

The construction of the optimal strategy� solving the traditional DM
design� (20) relies on the key proposition that reduces the minimisation
over mappings to an “ordinary” minimisation. It is formulated for the
static design� selecting a single decision rule�.

Proposition 10 (Basic DM� Lemma of Traditional Design)

The optimal admissible decision rule OS solving the traditional DM design�

(20) can be chosen as deterministic one OS(KA?) ≡ OA(KA?). It can be
constructed value-wise as follows. To each KA? ∈ KA?

?,

OA(KA?) ∈ Arg min
A∈A?

E[I|A,KA? ] (28)

provides the value of the optimal decision rule� corresponding to the
considered argument KA? . The minimum reached is

min
{S:KA?→A?}

E[I(GA? ,A,KA?)] = E

[
min

A∈A?
E[I|A,KA? ]

]
. (29)
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Proof Let us fix an arbitrary KA? ∈ KA?
?. The definition of minimum

implies that for all A ∈ A?

E
[
I|OS(KA?),KA?

]
≤ E[I|A,KA? ].

Let a decision rule� S assign an action� A ∈ A? to the considered KA? .
Then, the previous inequality becomes

E[I|OS(KA?),KA? ] ≤ E[I|S(KA?),KA? ].

Let us apply unconditional expectation E[·] acting on functions of KA? to
this inequality. Due to the isotonic nature of E[·], the inequality is
preserved. The the chain rule for expectation� – see Proposition 8 –
implies that on the right-hand side of the resulting inequality we get the
unconditional expected loss� corresponding to an arbitrarily chosen
decision rule� S. On the left-hand side the unconditional expected loss for
OS arises. Thus, OS : KA? → OA(KA?) is the optimal decision rule. �
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Model of Randomised Strategies

Proposition 10 and its proof imply no preferences if there are several
globally minimising arguments OA(KA?). We can use any of them or
switch between them in a random manner according to the pd f(At |Kt−1),
which has its support concentrated on minimisers. This is an example of a
randomised causal decision rule that is modelled by a pd.

model of decision rule is pd f(A|KA?).

model of decision strategy are pds (f(At |Kt−1))t∈t? . Strategies with
the same model provide the same closed loop model�. Thus, strategy�

can be identified with its model.

randomised decision rule has its model with the support containing at
least two actions.

randomised strategy has at least one randomised decision rule.
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Mathematical Aspects of Dynamic DM

Remark 3

We do not enter the game with ε-optimum: the existence of the
various minimisers is implicitly supposed.

It is worth repeating that the optimal decision rule is constructed
value-wise. To get the decision rule, the minimisation should be
performed for all possible instances of knowledge KA? ∈ KA?

?.

Often, we are interested in the optimal action for a given fixed, say
observed, knowledge�. Then, just a single minimisation is necessary.
This is typically the case of the estimation problem. This possibility
makes the main distinction from the dynamic design�, when the
optimal strategy�, a sequence of decision rules, is searched for. In this
case, see Section 11, the construction of decision rules is necessary.
This makes the dynamic design substantially harder and, mostly,
exactly infeasible [Fel60, Fel61].
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Estimate as Static Design

Example 5 (Point Estimate)

Let the behaviour be B = (GA? ,A,KA?) = (Θ, Θ̂,D) =
(unknown parameter,parameter estimate,known data). The optimal
estimator�, is searched among rules S : KA?

? → A?.

A performance index I(B) = I(Θ, Θ̂,D), strictly convex in Θ, is a
“distance” of Θ to Θ̂ with minimum for Θ̂ = Θ ∀D ∈ D?.

Proposition 10 provides the optimal estimate
OΘ̂(D) ∈ Arg minΘ̂∈Θ̂? E[I(Θ, Θ̂,D)|Θ̂,D].

Jensen inequality (27) gives E[I(Θ, Θ̂,D)|Θ̂,D] ≥ I(E[Θ|Θ̂,D], Θ̂,D),
i.e. the minimiser is OΘ̂(D) = E[Θ|Θ̂,D].

The evaluation of the optimal estimate requires specification of the
posterior pd� f(Θ|Θ̂,D). The estimate Θ̂(D) has no influence on the
parameter Θ: natural conditions of DM� f(Θ|D) = f(Θ|Θ̂,D) are
acceptable, i.e. Θ̂(D) and Θ are conditionally independent�.
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Dynamic Design
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Traditional Dynamic DM Design

We are searching for the optimal admissible strategy� assuming that
each decision rule� has at least the same knowledge� as its
predecessor. This extending knowledge models an increasing number
of data available for the DM�.

The considered performance index� evaluates behaviour� not the
strategy� used, i.e. the traditional DM design� is addressed.
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Extending Knowledge: Formalisation

The addressed dynamic design� deals with the knowledge�

permanently extended by the by chosen actions At & an observation�

∆t , t ∈ t?,

Kt
? = (At

?,∆t
?) ∪ K?t−1 = Dt

? ∪ K?t−1. (30)

data record Dt = (At ,∆t) =(action,observation) enriches the
knowledge Kt−1 to the knowledge Kt .
Attaching formally the knowledge K0 to Dt as D0, allows the
identification

Kt−1 = Dt−1. (31)

Both variants are used in the text.

The optimal admissible strategy can be found by using a stochastic
version of celebrated dynamic programming [Bel67]. It is nothing but
a repetitive application of Proposition 10 evolving Bellman function�

V(Kt−1) & determining actions of the constructed optimal strategy�.
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Proposition 11 (Dynamic Programming)

The causal strategy�
OS ≡

(
OSt : K?t−1 → A?t

)
t∈t?

with extending
knowledge� Kt

? = Dt
? ∪ K?t−1 minimising the expected traditional

performance index� E[I(B)] can be constructed in a value-wise way. For
every t ∈ t? and Kt−1 ∈ Kt−1

?, it suffices to take a minimiser OA(Kt−1)
in V(Kt−1) = min

At∈At
?

E[V(Kt)|At ,Kt−1], t ∈ t?, (32)

as the tth action�
OA(Kt−1) = OSt(Kt−1) of the optimal strategy�

OS.
The functional recursion (32) is evaluated in the backward manner against
the course given by the extending knowledge�. The recursion starts with

V(Kh) ≡ E[I(B)|Kh], (33)

Kh contains knowledge� available up to and including horizon� h. The
reached minimum value is

E[V(K0)] = min
S?≡{(St :K?t−1→At

?)
t∈t?
}

E[I(B)].
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Proof Let Kh be the knowledge� available at when reaching the horizon�

h. The chain rule for expectation� (25) and (33) imply

E[I(B)] = E[E[I(B)|Kh]] ≡ E[V(Kh)].

This identity allows us to get a uniform notation. The definition of Kh is
legitimate as Ah+1 is not optimised. The definition of minimum and
Proposition 10 imply

min
(St :K?t−1→At

?)
t∈t?

?
E[V(Kh)]

= min
(St :K?t−1→At

?)
t<h

?

(
min

{Sh:Kh−1
?→Ah

?}
E[V(Kh)]

)
=︸︷︷︸

(29)

min
(St :K?t−1→At

?)
t<h

?
E

[
min

Ah∈Ah
?

E[V(Kh)|Ah,Kh−1]

]
.

�
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Proof (cont.) and Implied Modelling Need

Proof Denoting V(Kh−1) ≡ minAh∈A?h
E[V(Kh)|Ah,Kh−1], we proved

the first step of the recursion and specified the start (33). The following
step becomes min{St :Kt−1→At

?}t<h
? E [V(Kh)] . We face the same situation

with the horizon� decreased by one. The procedure can be repeated until
the optimal decision rule�

OS1 is found. �

The optimisation relies on our ability to evaluate ∀t ∈ t? the
expectations

E[V(Kt)|At ,Kt−1] =

∫
∆t

?
V(∆t ,At ,Kt−1)f(∆t |At ,Kt−1) d∆t .

The freedom in the choice of the performance index� implies that the
set of possible functions V(B) = V(∆t ,At ,Kt−1) is extremely rich
and thus the full knowledge of pds f(∆t |At ,Kt−1) is generally needed.
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Predictor of Observations

The collection of pds f(∆t |At ,Kt−1) relates the observation� ∆t to
the action� At and its knowledge� Kt−1. Each pd� predicts observable
response ∆t of the system� to At and Kt−1. This leads to the notion
predictor.

predictor of observations is the collection of pds needed for the
optimal design�,

(f(∆t |At ,Kt−1))t∈t? . (34)

Often, the sole term predictor is used. The context clarifies the
meaning. Sometime, the alternative term is used:

predictive pd stresses that the predictor� is whole pd not only its
characteristics (like expectation or variance).
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Data-Driven Design

Generally, the behaviour� contains hidden quantities.

hidden quantity is a part of behaviour� B. B consists of potentially
observable ∆h (observations) and optional actions Ah. They form
observable data records Dh. Behaviour B may contain hidden
quantities X h that are never observed directly. While observation and
action realisations move data record� from ignorance� to knowledge�,
the hidden quantities stay within ignorance permanently
X h ∈ Gτ , τ ∈ t?.

Hidden quantities influence the optimal design “only” through the
terminal condition (33) of dynamic programming, see Proposition 11.
Its evaluation uses the conditional pd� f(X h|Kh), see Section 7.

Having V(Kh) = V(Dh), predictor� of observations is the only model
needed in the design. For t < h, we face

data-driven design whose performance index� depends on data

I(B) ≡ I(∆h,Ah) = I(Dh) ≡ I(Kh). (35)
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Proposition 12 (Data-Driven Design: Additive Performance Index)

In the data-driven design� the optimal admissible strategy�

OS ≡
(

OSt : K?t−1 → At
?
)

t∈t?
acting on an extending knowledge�

Kt
? = D?

t ∪ K?t−1 is searched for. OS is to minimise , cf. (31),

additive performance index

E
[
I
(

Dh
)]
≡ E

[∑
t∈t?

z(∆t ,At)

]
≡ E

[∑
t∈t?

z(Dt)

]
≡ E

[∑
t∈t?

z(Kt)

]
(36)

partial performance index is z(∆t ,At) = z(Dt) = z(Kt) ≥ 0.

The optimal strategy�
OS can be constructed in the value-wise way. For all

Kt−1 ∈ Kt−1
?, t ∈ t?, a minimising argument OA(Kt−1) in

V(Kt−1) = min
At∈At

?
E[z(Kt) + V(Kt)|At ,Kt−1], t ∈ t?, (37)

is the optimal action, OA(Kt−1) = OSt(Kt−1). The recursion (37) runs
against the course of knowledge extension, starting from V(Kh) = 0 and
reaching the minimum E[V(K0)].
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Proof and Terminology

Proof It follows exactly the line of Proposition 11 with a modified
definition of the function V(·)

V(Kt−1) ≡ min
(Sτ :K?τ−1→Aτ

?)
τ≥t

?

∑
τ≥t

E [z(Kτ )| Kt−1] . (38)

�

value function is an accepted name for the function V(·) evolving in
the general dynamic programming, Proposition 11.

Bellman function is an alternative name of the value function.

loss-to-go is another wide-spread name of the value function� in the
special case (38).

Non-negativity of the partial preference index can be replaced by
boundedness from below.
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Asymptotic of the Design

The asymptotic of the dynamic programming is inspected for the
horizon� h→∞ within this section.

The outlined analysis serves us only as a motivation for approximate
design, see Section 29. Thus, technicalities are suppressed as much as
possible.

The data-driven design� with an additive performance index� (36) is
considered only.

The general, data-dependent performance index� can always be
converted into the additive form by defining the partial performance
index�

z(Kt) = z(Dt) = z(∆t ,At) =

{
I(∆h,Ah) if t = h,

0 otherwise
. (39)
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Time-Invariant Data-Driven Design

We deal with a simpler but still useful data-driven design� assuming
existence of

information state , which is an observed finite-dimensional array
replacing in a sufficient way the knowledge� Kt−1, i.e.
E[•|At ,Kt−1] = E[•|At ,Xt−1].

We assume that the partial performance index� depends on the
information state Xt and the action� At only, i.e.
z(∆t ,At) ≡ z(Xt ,At) and the considered performance index� is

I(Kh) = I(Dh) = I(∆h,Ah) =
∑
t∈t?

z(Xt ,At). (40)

Asymptotic analysis makes sense only when a meaningful solution of
the DM design� exists even for an unbounded decision horizon�.
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Stabilising Strategy

stabilising strategy is defined as follows: let us consider sequence of
DM� designs with the growing horizon� h→∞, i.e. with extending
sets ht? ≡ {1, . . . , h} of time indices. The infinite sequence of
decision rules

{St : Kt−1 → At
?}t∈∞t?≡{1,2,...,}

is called the stabilising strategy if there is a finite constant c such
that the expectation of the (non-negative) partial performance index�

E[z(Xt ,At)|At ,Kt−1] ≤ c <∞, t ∈ ∞t? ≡ {1, 2, 3, . . .}. (41)

Obviously, the expected performance index� with the growing decision
horizon� grows to infinity as (in generic case) it is a sum of positive
terms.

Consequently, a change of finite number of decision rules forming the
strategy� has no influence on the expected performance index�.
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Asymptotically Optimal Strategy is Stationary

For h→∞, the influence of DM-rules’ changes on the expected
performance index� diminishes and the optimal strategy� is stationary.

stationary strategy means a DM strategy� formed by a repetitive use
of the same rule. Its (approximate) evaluation is simpler than that of
a strategy� with time-varying rules.

Proposition 13 (Asymptotic Design)

Let a stabilising strategy� exist with the expected partial performance
index� (depending on action At and a finite-dimensional information state�

Xt) bounded by a c <∞. Then, for h→∞, the optimal strategy� can be
chosen as stationary strategy�. Actions generated by the decision rule�

defining it are minimising arguments in the formal analogy of (37)
∞V(Xt−1) + ∞C = min

At∈At
?

E [z(Xt ,At) + ∞V(Xt)|At ,Xt−1] (42)

with a constant ∞C ≤ c and a time-invariant Bellman function�
∞V(X ).
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Proof

Let us take any finite horizon� h and, within this horizon�, denote
hṼ(Kt−1) ≡ hṼ(Xt−1) the optimal loss-to-go�.

Let us define hC as the smallest value such that

hV(Xt) ≡ hṼ(Xt)− (h − t) hC

is bounded from above for h→∞ and a fixed t ∈ ∞t?, Xt ∈ X ?.

Obviously, the optimal strategy� cannot lead to a higher expected
performance index� than any stabilising strategy�. Thus, the optimal
strategy has to also be a stabilising strategy�. Thus, hC ≤ c and
limh→∞

hC = ∞C exists.

The optimisation is uninfluenced if we subtract the value hC from
each partial performance index�. For arbitrary fixed t,Xt , the
corresponding modified loss-to-go�

hV(Xt), is bounded from above.
hV(Xt) = hṼ(Xt)− (h − t) hC is the difference between a pair of
monotonous sequences (indexed by h). Thus, a finite limit
∞V(Xt) = limh→∞

hV(Xt) exists.
�
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Proof (cont.)

Proof

The modified loss-to-go� fulfills the equation

hV(Xt−1) + hC = min
At∈At

?
E
[
z(Xt ,At) + hV(Xt)|At ,Xt−1

]
.

Existence and finiteness of the involved limits imply that the
asymptotic version of the Bellman equation is fulfilled, too,

∞V(Xt−1) + limh→∞
hC = min

At∈At
?

E [z(Xt ,At) + ∞V(Xt)|At ,Xt−1] .

Limits of hV(Xt) exist and, thus, limh→∞
hC = limh→∞

hC = ∞C .

The identical optimisation is performed for each t <∞. Thus, it
provides the same decision rule� for each t: the optimal strategy is a
stationary one.

�

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 99 / 393



A Few Comments

Remark 4

The value function� is unique up to a shift.

Solutions of the Bellman equation for a growing horizon� h represent
successive approximations for solving its stationary version (42).

iterations in strategy space , [Kus71], provide an alternative way of
finding the solution. Essentially, a stabilising stationary strategy
S ∈ S? is selected and the linear equation

V(X ) + C = E[z(X̃ ,S(X )) + V(X̃ )|S(X ),X ]

is solved for the function V(·) and constant C. Then, a new
approximating strategy is found in the value-wise way
S(X ) ∈ Arg minA∈A? E[z(X̃ ,A) + V(X̃ )|A,X ] with such a V(·).

Under general conditions, the newly found strategy is stabilising and
iterations may be repeated until the guaranteed convergence.
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Stationary DM with Markov Predictor

Example 6 (DM with Markov Predictor)

The time-invariant data-driven design� with observation� ∆? and
action� A? spaces having finite cardinalities is considered. A
time-invariant partial performance index� z(∆t ,At),
∆t ∈ ∆?, At ∈ A? (a finite table) determines the selected additive
performance index.

The past observation� ∆t−1 is assumed to be information state�, i.e.
E[•|At ,Kt−1] = E[•|At ,∆t−1]. It means that the system is modelled
by (controlled) Markov chain [Kus71].

Propositions 12 and 13 directly imply that the loss-to-go� is a
time-invariant finite table V(∆t), ∆t ∈ ∆?. The optimal decision rule�

f(At |Kt−1) = f(At |∆t−1), determining the stationary strategy�, is
concentrated on minimising argument OAt = OA(∆t−1) in

V(∆t−1) + C = min
A∈A?

E[z(∆t ,At) + V(∆t)|At ,∆t−1], ∀∆t−1 ∈ ∆?.
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Learning
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Why Learning Is Needed?

Behaviour B ∈ B? includes generally an hidden quantity� X h, which is
never observed directly but influences observation�.
Question arises how to get the predictor� (34) needed in the optimal
DM�, see Proposition 11.

Generally, the performance index� depends on X h. For instance, it
happens when we want to estimate an unknown quantity.
Generally, DM� wants to influence hidden quantity� in spite of the
fact that we do not observe them directly,

In both cases, the general dynamic programming, Proposition 11
needs the pd f(X h|Kh), an estimate of hidden quantity�, for
evaluation of the initial condition (33) of dynamic programming.

Here we describe how to get both the predictor� and the estimate of
hidden quantities. The solved problem, known as nonlinear filtering�

[Jaz70], is of an independent interest as its solution provides a
consistent formal prescriptive model of learning.
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Bayesian Filtering

The joint pd� f(B) describing observed, opted and hidden quantities is
constructed from the following elements.

observation model relates observations ∆t to hidden X t , to an action�

At and its knowledge� Kt−1(
f(∆t |Xt ,At ,Kt−1) ≡ f(∆t |X t ,At ,Kt−1)

)
t∈t?

. (43)

Unlike the predictor�, the observation model contains an unknown
hidden quantity� Xt ∈ Xt

? ⊂ Gτ , ∀τ ∈ t?. kalman

time evolution model relates the hidden quantities X h ∈ X h?(
f(Xt |Xt−1,At ,Kt−1) ≡ f(Xt |X t−1,At ,Kt−1)

)
t∈t?

. (44)

Remark 5

The conditional independence, required by (43) for observations and by
(44) for time evolution models is unrestrictive as it can always be met by a
suitable re-definition of hidden (Xt = X t).
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Natural Conditions of DM and Prior Pd

The processing is made under natural conditions of DM.

natural conditions of DM formally express [Pet81] that quantities X h

are unknown to the strategies considered. They postulate
independence of At and X t−1 when conditioned on Kt−1

f(At |X t−1,Kt−1) = f(At |Kt−1) ⇔︸︷︷︸
Proposition 5

(45)

f(X t−1|At ,Kt−1) = f(X t−1|Kt−1).

The inspected filtering starts from

prior pd f(X0) that expresses the prior knowledge� about the initial
hidden quantity X0. Thus, it fulfills

f(X0) ≡ f(X0|K0) =︸︷︷︸
(45)

f(X0|A1,K0). (46)
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Are Natural Conditions of DM Natural?

Remark 6

Often, the unknown quantities Xt together with the action� At are
assumed to describe the involved conditional pds fully. Then, Kt−1 is
omitted.

The natural conditions of DM� express the assumption that
Xt /∈ Kτ−1 ∀τ, ∀t ∈ t?. Thus, values of X t−1 cannot be used by the
decision rules forming the admissible strategy�. Alternatively, we
cannot gain information about X t−1 from the action� At if the
corresponding observation� ∆t (the corresponding reaction of the
system�) are unavailable.

The hidden Xτ τ ≥ t can be influenced by At .

The natural conditions of DM� are “naturally” fulfilled by strategies
we are designing. They have to be checked when the data record�s
influenced by an “externally chosen” strategy� are processed.
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Proposition 14 (Generalised Bayesian Filtering)

Under natural conditions of DM�, the predictor� (34) reads

f(∆t |At ,Kt−1) =

∫
X?

t

f(∆t |Xt ,At ,Kt−1)f(Xt |At ,Kt−1)dXt . (47)

It needs generalised Bayesian

filtering , which labels the evolution of the pd f(Xt |At ,Kt−1) from
the prior pd� f(X0). The filtering consists of the pairs kalman

data updating extends the knowledge Kt−1 by the data record�=
Dt=(action�,observation�)=(At ,∆t) fkalman

f(Xt |Kt) =
f(∆t |Xt ,At ,Kt−1)f(Xt |At ,Kt−1)

f(∆t |At ,Kt−1)
(48)

∝ f(∆t |Xt ,At ,Kt−1)f(Xt |At ,Kt−1).

time updating reflects evolution Xt → Xt+1, At+1 given,

f(Xt+1|At+1,Kt) =

∫
X?

t

f(Xt+1|Xt ,At+1,Kt)f(Xt |Kt) dXt . (49)
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Proof Sequential use of the marginalisation�, chain rule� and Proposition
5 imply

f(∆t |At ,Kt−1) =

∫
Xt
?

f(∆t ,Xt |At ,Kt−1) dXt

=

∫
Xt
?

f(∆t |Xt ,At ,Kt−1)f(Xt |At ,Kt−1) dXt .

The data updating� coincides with the Bayes rule�. The time updating�

results from the marginalisation�, the chain rule�, and the natural
conditions of DM� implying f(Xt |At+1,Kt) = f(Xt |Kt). �

Remark 7

The described filtering� is called generalised to distinguish a nonstandard
use of the terms Bayesian filtering and predictions [Jaz70]. Without this
adjective, they are understood as specific DM� problems. The
“generalisation” means that the conditional pds needed for these tasks are
evaluated only. They serve for solving a whole class of DM� problems.
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Filtering of Noisy Markov Chain

Example 7 (Filtering of Markov Chain)

Let the set of hidden Θ? and observations ∆? have finite cardinalities
and no actions are present A? = ∅.
Let us have a given prior pd f(X0|K0), a time and data independent
time evolution model� f(Xt |Xt−1) and an observation model� multinomfilter

f(∆t |Xt). All are tables, pds with respect to a counting measure.

Proposition 14 implies that the predictive pd and posterior pd� evolve
for t ∈ t? and Kt−1 = ∆t−1 as follow

f(∆t |Kt−1) =
∑

Xt∈X?

f(∆t |Xt)f(Xt |Kt−1) (predictive pd�)

f(Xt |Kt) =
f(∆t |Xt)f(Xt |Kt−1)∑

Xt∈X? f(∆t |Xt)f(Xt |Kt−1)
(data updating�)

f(Xt+1|Kt) =
∑

Xt∈X?

f(Xt+1|Xt)f(Xt |Kt) (time updating�).
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More Comments

Remark 8

Filtering extrapolates knowledge� into ignorance� assuming that the
rule generating Xt does not change: a knowledge� can accumulate
only with fixed rules governing behaviour.

Under natural conditions of DM�, the closed loop model� factorises

fS(B) =

prior pd︷ ︸︸ ︷
f(X0)

∏
t∈t?

observation×time evolution pds︷ ︸︸ ︷
f(∆t ,Xt |Xt−1,At ,Kt−1)︸ ︷︷ ︸
system model M

∏
t∈t?

f(At |Kt−1)︸ ︷︷ ︸
strategy S

= M(B)S(B),

(50)reflecting that the compared strategies� work with a common

system model M = f(X0)
∏

t∈t? f(∆t ,Xt |Xt−1,At ,Kt−1) and
identification of the model of strategy with strategy� are used.

The presented accumulation of knowledge and its extrapolation
represent a good prescriptive model of learning.
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Filtering in Service of Dynamic Programming

The filtering is often of independent interest but the construction of
the predictive pd� and of the pd needed in (33) are our key
motivation for its formulation and solution.
Under the adopted conditions, the pd (33), needed for initiation of
the dynamic programming, evaluates recursively

f(X h|Kh) =︸︷︷︸
(22)

f(X h,Dh|Kh−1)

f(Dh|Kh−1)
= f(X h−1|Kh−1) (51)

× f(∆h|X h,Ah,Kh−1)f(Xh|X h−1,Ah,Kh−1)f(Ah|X h−1,Kh−1)

f(Dh|Kh−1)

=︸︷︷︸
(43),(44),(45)

f(X h−1|Kh)× f(∆h|Xt ,Ah,Kh−1)f(Xh|Xh−1,Ah,Kh−1)

f(∆h|Ah,Kh−1)
.

The derived recursion uses the observation model� and the time
evolution model�. It can be formally repeated until arriving at the
prior pd� as starting point f(X0|K0) ≡ f(X0).
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Remark 9

Under the natural conditions of DM�, filtering� relies on the
knowledge of actions and not of the knowledge of the strategy� S
generating them. It is important when we learn while the decision
loop is closed, especially, by a human decision maker.

The time evolution model� f(Xt |Xt−1,At ,Kt−1) as well as the
observation model� f(∆t |Xt ,At ,Kt−1) have to result from a
theoretical system modelling. Modelling uses both field knowledge,
like conservation laws, , e.g., [KSVZ88], and approximation
capabilities [Hay94] of a model family. The prior pd� f(X0) quantifies
either expert knowledge or situational analogy, see Section 22.

The observations, the only bridge to reality, enter the evaluations in
the data-updating step only when the newest (action�,observation�)
pair is processed. This simple fact is important for approximation of
the time evolution model�, see Section 28.
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Summarising Comments on Filtering

The described Bayesian filtering� combines the prior knowledge�

quantified by the prior pd� f(X0), the theoretical knowledge of the
specific fields described by the observation model� f(∆t |Xt ,At ,Kt−1),
the time evolution model� f(Xt |Xt−1,At ,Kt−1) and the data records
Dh = (Ah, ∆h) by using coherent deductive calculus with pds.

This combination of information sources is a powerful, internally
consistent, framework describing the essence of learning. Due to its
deductive structure, an important assurance is gained:

The incorrect modelling or non-informative data can only be blamed
for a possible failure of the learning process.

Thus, the errors caused by an improper choice of the learning method
are avoided.

car pos est
queue length
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Bayesian Estimation

This section deals with a special version of filtering� called estimation.

estimation is filtering, which arises when the hidden quantities Xt are
time invariant

Xt = Θ, ∀t ∈ t?. (52)

unknown parameter is the common value of time-invariant hidden
quantities. The time evolution model� of the unknown parameter is
f(Xt |Xt−1,At ,Kt−1) = δ(Xt − Xt−1).

Dirac delta δ(·) is a formal pd of the measure fully concentrated on
zero argument. For a formally correct handling consult [Vla79].

A direct specialisation of Proposition 14 provides the solution of the
Bayesian estimation.
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Proposition 15 (Bayesian Estimation)

Let natural conditions of DM� be met and hidden Xt = Θ ∈ Θ?

⊂ Gτ , ∀t, τ ∈ t? be time invariant. Then, the predictive pd� reads

f(∆t |At ,Kt−1) =

∫
Θ?

f(∆t |Θ,At ,Kt−1)f(Θ|Kt−1) dΘ. (53)

It uses the generalised Bayesian

parameter estimation , which evolves

posterior pd f(Θ|Kt−1) .

parameter estimate of the unknown parameter� Θ is the posterior pd.

Its evolution – uninfluenced by At – coincides with the data updating� (48)

f(Θ|Kt) =
f(∆t |Θ,At ,Kt−1)f(Θ|Kt−1)

f(∆t |At ,Kt−1)
∝ f(∆t |Θ,At ,Kt−1)f(Θ|Kt−1)

(54)
initiated by the prior pd� f(Θ) ≡ f(Θ|A1,K0) = f(Θ|K0).
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Batch (Non-Recursive) Parameter Estimation

Proposition 16 (Batch Parameter Estimation)

Under natural conditions of DM�, the (generalised) parameter estimate�

allows the batch evaluation of the posterior pd

f(Θ|Kt) =

∏
τ≤t f(∆τ |Θ,Aτ ,Kτ−1)f(Θ)∫

Θ?
∏
τ≤t f(∆τ |Θ,Aτ ,Kτ−1)f(Θ) dΘ

≡ L(Θ,Kt)f(Θ)

J(Kt)
. (55)

likelihood L : Θ? → [0,∞] is defined

L(Θ,Kt) ≡
∏
τ≤t

f(∆τ |Aτ ,Kτ−1,Θ) for a fixed knowledge� (56)

Recursive evaluation of the likelihood� coincides with that for the
non-normalised posterior pd� (54) but starts from L(Θ,K0) ≡ 1.

The normalisation factor J(·) is

J(Kt) =

∫
Θ?

L(Θ,Kt)f(Θ) dΘ⇒ f(∆t |At ,Kt−1) =
J(Kt)

J(Kt−1)
. (57)
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Proof It exploits the calculus with pds: marginalisation�, chain rule�, and
Bayes rule�, Proposition 5, under the natural conditions of DM� (45). �

Remark 10

parametric model is the alternative name of the observation model�
f(∆t |Θ,At ,Kt−1) used whenever the estimation problem is
considered, i.e. when the hidden quantities Xt are time invariant.

The recursive evolution of the pd f(Θ|Kt−1) allows us to interpret the
posterior pd� as the prior pd� before processing new data records.

The data inserted into the parametric model� corrects the subjectively
chosen prior pd� f(Θ). The posterior pd� f(Θ|Kt−1) reflects both
objective and subjective knowledge pieces. If the data are informative,
the relative contribution of the single subjective factor f(Θ) to the
posterior pd decreases with increasing t as the likelihood� L(Θ,Kt)
contains t “objective” factors (56).
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Further Remarks On Parameter Estimation

Remark 11

Zero values are preserved by multiplication. Thus, the posterior pd�

re-distributes the probability mass only within the support� of the
prior pd�, i.e. within the set supp [ f(Θ)] ≡ {Θ ∈ Θ? : f(Θ) > 0}.
Consequently, the prior pd may serve for specification of hard bounds
on possible parameter values, but it does not allow us to “learn” out
of the supp [ f(Θ)].

Unknown parameter is always in the estimator ignorance�.

Under the natural conditions of DM� (45), the action values are used
in estimation, not the strategy� generating them.

The parameter Θ is usually finite-dimensional. Exceptionally, we deal
with potentially infinite-dimensional parameter. It means that the
number of unknown quantities is finite but increases without limits.
This case is often called nonparametric estimation.
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Asymptotic of Estimation

The analysis outlined here serves us primarily for interpretation of
estimation results when none of the considered parametric model�s is
the objective pd�, which is refereed here as of(B). The result can be
directly used for constructions of approximate learning and design.

Specifically, the predictor� of observations corresponding to the
objective pd�

of(∆t |At ,Kt−1) is related to the predictive pd�

f(∆t |At ,Kt−1) – obtained through the parameter estimation�; see
Proposition 15.

Similarly to the asymptotic design, Section 12, all technicalities are
suppressed as much as possible.

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 119 / 393



Kullback-Leibler Divergence (KLD)

The notion of the Kullback-Leibler divergence, KLD�, [KL51] measuring
proximity of a pair of pds serves us for the asymptotic analysis as well as
for fully probabilistic design discussed in Section 16.

KLD Kullback–Leibler divergence D(f||̃f), abbreviated KLD, compares
a pair of pds f, f̃ acting on a common domain X ?. It is defined by the
formula

D(f||̃f) ≡
∫

X?

f(X ) ln

(
f(X )

f̃(X )

)
dX . (58)

Its asymmetry is stressed by referring to it as the KLD of f on f̃.
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Basic Properties of KLD

Proposition 17 (Properties of KLD�)

Let f, f̃ be pd�s (Radon–Nikodým derivatives) acting on a set X ?. It holds

D(f||̃f) ≥ 0,

D(f||̃f) = 0 iff f = f̃ dX -almost surely

D(f||̃f) =∞ iff on a set of a positive dominating measure dX , it
holds f > 0 and f̃ = 0,

D(f||̃f) 6= D(̃f||f) and the KLD� does not obey triangle inequality,

D(f||̃f) is invariant with respect to a sufficient mapping
Υ : X ? → Y ?. Note that any bijective mapping Υ is sufficient.

Proof See, for instance, [Vaj82]. �
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Entropy Rate

The asymptotic analysis exploits the notion of entropy rate�, a slight
generalisation of KLD�, [CK86]. It measures the divergence of the
objective predictor� of(∆τ |Aτ ,Kτ−1) on a parametric model�
f(∆τ |Θ,Aτ ,Kτ−1). For a behaviour� realisation� B = (Θ,K∞).

entropy rate is, for each Θ ∈ Θ?, defined

D∞ ( of||Θ) ≡ limt→∞Dt ( of||Θ) (59)

≡ limt→∞
1

t

∑
τ≤t

∫
∆?
τ

of(∆τ |Aτ ,Kτ−1) ln

(
of(∆τ |Aτ ,Kτ−1)

f(∆τ |Θ,Aτ ,Kτ−1)

)
d∆τ .

Non-negativity of KLD�, Proposition 17, implies that the definition is
correct and that D∞ ( of||Θ) ∈ [0,∞].
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Asymptotic of Estimation

Proposition 18 (Basic Result on the Estimation Asymptotic)

Let the natural conditions of decision making (45) hold. For almost all
Θ ∈ Θ?, let there exist positive CΘ,C Θ uniformly bounded by a finite c,
i.e. 0 < C Θ ≤ C Θ ≤ c <∞, and a finite time moment t̄Θ ∈ {1, 2, . . .},
such that ∀t > t̄Θ, ∀Kt ∈ Kt

?

C Θf(∆t |Θ,At ,Kt−1) ≤ of(∆t |At ,Kt−1) ≤ C Θf(∆t |Θ,At ,Kt−1). (60)

Then, the posterior pd f(Θ|Kt−1) (54) converges almost surely (with
respect to of to a pd f(Θ|K∞). Its support coincides with the set of
minimising arguments in

supp [ f(Θ|K∞)] = Arg min
Θ∈supp[ f(Θ)]∩Θ?

D∞ ( of||Θ) . (61)
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Proof I

Proof Under the natural conditions of DM� (45), the posterior pd� (54)
reads

f(Θ|Kt) ∝ f(Θ) exp[−tD(Kt ,Θ)], (62)

D(Kt ,Θ) =
1

t

∑
τ≤t

ln[η(Kτ ,Θ)] (63)

η(Kτ ,Θ) ≡
of(∆τ |Aτ ,Kτ−1)

f(∆τ |Θ,Aτ ,Kτ−1)
.

This form exploits that the non-normalised posterior pd� can be multiplied
by a Θ-independent factor. Let us fix the argument Θ ∈ Θ? and set

eτ ;Θ ≡ ln(η(Kτ ,Θ))− oE [ln(η(Kτ ,Θ))|Aτ ,Kτ−1]

≡ ln(η(Kτ ,Θ))−
∫

∆τ
?

of(∆τ |Aτ ,Kτ−1) ln(η(Kτ ,Θ)) d∆τ .
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Proof II

A direct check reveals that the deviations eτ ;Θ of ln(η(Kτ ,Θ)) from
their conditional expectations oE[ln(η(Kτ ,Θ))|Aτ ,Kτ−1], given by
of(∆τ |Aτ ,Kτ−1), are zero mean and mutually uncorrelated. With
them,

D(Kt ,Θ) = Dt ( of||Θ) +
1

t

∑
τ≤t

eτ ;Θ.

The first right-hand term is nonnegative, Proposition 17. Due to
(60), it is also finite and converges for t →∞.

Assumption (60) implies that variance of eτ ;Θ is bounded. Thus, the
second sum converges to zero a.s.; see [Loe62], page 417, and (63)
converges a.s. D∞ ( of||Θ) ≥ 0.

The posterior pd� remains unchanged if we subtract
t minΘ∈supp[ f(Θ)]∩Θ? D∞ ( of||Θ) in the exponent of of (62). Then,
the exponent contains (−t× an asymptotically nonnegative factor)
and the pd� f(Θ|K∞) may be nonzero on the set (61) only.

�
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Remark 12

The entropy rate� extends the KLD� (58). It covers asymptotic and
controlled cases and often coincides with the KLD.

Assumption (60) excludes a parametric model� that does not expect
some observations generated by the system� with nonzero
probability and vice versa.

The Bayesian estimation asymptotically finds

the best projection , which is the minimiser in the set of parametric
models {(f(∆t |Θ,At ,Kt−1))t∈t?}Θ∈Θ? of the entropy rate� of the
objective pd�

of(∆t |At ,Kt−1) on it.

The prior pd� assigns prior belief to Θ ∈ Θ? that the parametric
model� is the best projection of the objective pd� [BK97]: not
knowing it we do not know the best projection.

The model is identifiable if the entropy rate� has a unique minimiser.
Identifiability depends on i) the parametric-models’ set; ii) the actions
used (e.g. zero inputs hide their dynamic influence on outputs).
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Remark 13

If the objective pd�
of(∆t |At ,Kt−1) coincides with f(∆t |Θ,At ,Kt−1)

for some Θ = oΘ ∈ Θ? with f ( oΘ) > 0 then oΘ is in the support of
the asymptotic posterior pd f(Θ|K∞). If, moreover, the model is
identifiable, then the objective pd� is asymptotically identified by the
adopted Bayesian approach. This has the appealing expression:

Bayesian estimator is consistent whenever there is a consistent one.

Often, a similar analysis is performed by measuring the distance of
the parametric model� to the empirical pd of data [San57]. It gives
similar answers if the empirical pd converges to the objective pd�.
Moreover, it provides hints of how to approximate the posterior pd
[Kul96]; see also Section 27. On the other hand, the known
conditions of such convergence are more restrictive. For instance, the
analysis of the estimation in closed decision loop is much harder.
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Fully Probabilistic DM Design
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This part goes beyond the traditional design�. It justifies the fully
probabilistic design (FPD�) of DM� strategies and finds its position with
respect to the traditional Bayesian DM�. It summaries, unifies and
complements results described in [K9́6, GK05, KG06, ŠVK08, Kár07].
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Representative of Strategy Ordering 4S?

The found functional representing the complete ordering of strategies
4S? , (14), is

ES[IS] =

∫
B?

IS(B)fS(B) dB, where, see (19),

IS(B) = U(Z(B),W−1(S,B)) with, see (2),

B = W(S,N), N ∈ N? 6= ∅.

The traditional design� does not consider dependence of the
performance index� IS on the strategy� S.

Here, this dependence is modelled under an additional, widely
acceptable, assumption on the utility� U defining the performance
index� IS.
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Ideal Pd

The chosen performance index� I serves for the design� of the optimal
strategy�

OIS ≡ OS ∈ Arg min
S∈S?

∫
B?

I(B,W−1(S,B))fS(B) dB. (64)

The corresponding closed loop model leads to the important notion:

ideal pd If(B) is interpreted as the pd� describing the behaviour of
the decision loop closed by the optimal strategy�

OIS (64), i.e.
If(B) ≡ f OIS(B).

All performance indices leading to optimal strategies that provide the
same ideal pd, the same closed loop model, are obviously equivalent
from DM design� view point.
Further on, we inspect the DM design� that – instead of the
specification of equivalent performance indices – starts with the
specification of the ideal pd�. target
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Utility Models Risk Attitude of Decision Makers

Further on, we consider utilities modelling properly the risk attitude.

Requirement 3 (Risk Respecting Utility)

The utility U respects risk attitude properly if it meets the implication

fS( aB) = fS( bB) for aB, bB ∈ B? (65)

⇒ U(z ,W−1(S, aB)) = U(z ,W−1(S, bB)), ∀z ∈ (−∞,∞).

Requirement 3 means that two equally probable behaviours aB, bB
leading to the same value z of the loss contribute to the expected
performance index� equally.

Under Requirement 3, the performance index� has to have form

IS(B) ≡ I(B,W−1(S,B)) = I(B, fS(B)). (66)
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Representative of Performance Indices with Given Ideal Pd

Here we assume that the decision maker has provided an ideal pd�
If(B)

instead of a performance index�. We search for a representative of the
equivalence class of performance indices having the given ideal pd� as the
closed loop model� with optimal strategy.

Requirement 4 (On Representative Performance Index)

The performance index�

meets Requirement 3, i.e. it has the form I(B, fS(B));

has continuous derivative with respect to the second argument for
almost all B ∈ B?;

guarantees
oS ∈ Arg min

S∈S?

∫
B?

I(B, fS(B)) dB (67)

If(B) = f oS(B)

fulfills I(B, If(B)) = constant, ∀B ∈ B?. (68)
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FPD Represents DM Tasks with Common Ideal Pd

Proposition 19 (Representative of Performance Indices Sharing Ideal)

For a given ideal pd�
If(B) > 0 on B?, the representative of the

performance indices sharing it, which meets Requirement 4, exists and up
to linear transformation has the form

I(B, fS (B)) = ln

(
fS (B)
If(B)

)
, i.e. (69)

the expected performance index� to be minimised is the KLD�

ES [IS] = D(fS || If) =

∫
B∈B?

fS (B) ln

(
fS (B)
If(B)

)
dB. (70)

FPD , fully probabilistic design of DM� strategy�, is the optimal
design� with the performance index� (69). It takes

OS ∈ Arg min
S∈S?

D(fS || If) as the optimal strategy�. (71)
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Proof of the Form of Representative of Performance
Indices Sharing Ideal Pd

Proof Under Requirement 4, (67) implies that the variation of the
minimised functional has to vanish for fS(B) = If(B). This gives the
necessary condition for almost all B ∈ B?

x
∂

∂x
I(B, x) + I(B, x) = constant, for x = If(B) > 0. (72)

Under Requirement 4, the identity (68) implies that (72) has the solution

I(B, fS(B)) = constant × ln

(
fS(B)
If(B)

)
+ Constant.

The minimum is reached for the constant > 0 only. �
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Data-Driven FPD: Formalisation

To get a feeling about this non-standard design, we start with
data-driven design� with behaviour B = Dh = sequence of data
record�s = (Ah,∆h) = sequence of (action�s,observation�s) pairs.

In this case, the joint pd� f(B) ≡ f(Dh) factorises by a repetitive use
of the chain rule�

f(Dh) =
∏
t∈t?

f(∆t |At ,D
t−1)f(At |Dt−1). (73)

We consider FPD� determined an ideal pd� factorised similarly

If(Dh) =
∏
t∈t?

If(∆t |At ,D
t−1) If(At |Dt−1) (74)

and the optimal strategy minimising the KLD� (58) of f(Dh) on
If(Dh).
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Data-Driven FPD: Solution

Proposition 20 (Solution of Data-Driven FPD�)

The randomised decision rule�s of the optimal strategy� in the data-driven
FPD� are ofAtex1

ofAtex2

Of(At |Dt−1) = If(At |Dt−1)
exp[−ωγ(At ,D

t−1)]

γ(Dt−1)
(75)

γ(Dt−1) ≡
∫

A?t

If(At |Dt−1) exp[−ω(At ,D
t−1)] dAt ≤ 1 (76)

for t < h and γ(Dh) = 1 (77)

ωγ(At ,D
t−1) ≡

∫
∆?

t

f(∆t |At ,D
t−1) ln

(
f(∆t |At ,D

t−1)

γ(Dt) If(∆t |At ,Dt−1)

)
d∆t .

(78)

The solution is performed against the time course, starting at t = h.
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Data-Driven FPD: Proof I

Proof The product forms of the closed loop model (73) and its ideal
counterpart (74) imply that KLD� is additive form with the partial
performance index� z(Dt)

= ln

(
f(∆t |At ,Kt−1)f(At |Kt−1)
If(∆t |At ,Kt−1) If(At |Kt−1)

)
= ln

(
f(∆t |At ,D

t−1)f(At |Dt−1)
If(∆t |At ,Dt−1) If(At |Dt−1)

)
.

Thus, we face a variation of Proposition 12. Let us express loss-to-go� in
the form − ln(γ(Dt)). It defines the terminal condition γ(Dh) = 1 and the
generic term to be minimised over f(At |Dt−1) reads∫
D?

t

f(∆t |At ,D
t−1)f(At |Dt−1) ln

(
f(∆t |At ,D

t−1)f(At |Dt−1)

γ(Dt) If(∆t |At ,Dt−1) If(At |Dt−1)

)
dDt

=

∫
A?t

f(At |Dt−1)

ln

(
f(At |Dt−1)
If(At |Dt−1)

)
+ ω(At ,D

t−1)︸ ︷︷ ︸
(78)

 dAt
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Data-Driven FPD: Proof II

= − ln

(∫
A?t

If(At |Dt−1) exp
[
−ω(At ,D

t−1)
]

dAt

)

+

∫
A?t

f(At |Dt−1) ln

 f(At |Dt−1)
If(At |Dt−1) exp[−ω(At ,Dt−1)]∫

A?t

If(At |Dt−1) exp[−ω(At ,Dt−1)] dAt

 dAt .

The last term depends on the optimised decision rule� f(At |Dt−1) and it is
conditional version of KLD� of f(At |Dt−1) on the decision rule (75).
Proposition 17 implies that minimiser has to have the form (75) and the
first term above is the minimum reached. It defines the loss-to-go for the
subsequent optimisation step. �
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Remark 14

For an alternative derivations [K9́6, vK97, ŠVK08].

At a descriptive level, the dynamic programming, Proposition 11,
consists of the evaluation pairs

(conditional expectation, minimisation).

Except of a few numerically solvable cases, some approximation
technique is needed. The complexity of the approximated optimum
prevents a systematic use of the standard approximation theory.

Systematic approximations [Ber01, SBPW04] are still not matured
enough and various ad hoc schemes are adopted. The FPD� finds
minimisers explicitly and reduces the design� to a sequence of
conceptually feasible multivariate integrations.

The found optimal strategy� is a randomised and causal one. The
physical constraints� are met trivially if the chosen ideal strategy
respects them, i.e. if supp

[
If(At |Kt−1)

]
⊂ A?t , cf. (75).
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FPD and Traditional Design: Aim of Exposition

The fully probabilistic design forms the core of our view on DM.

Here, it is shown that traditional DM design�s form a proper subset of
DM� formulated as FPD�.

Thus, no DM task is neglected.
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Discrepancy in the Interpretation of Ideal Pd

Dynamic programming, Proposition 11, that solves the traditional
DM design� leads to the optimal deterministic strategy.

The ideal pd� is interpreted as closed loop model� with the optimal
strategy�.

⇓
The positivity of the ideal pd� required in Proposition 19 leading to
FPD is violated.
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Randomised Approximation of Deterministic Strategies

The following technical tool helps us in coping with the discrepancy.

Proposition 21 (Lower Bound on Entropy of Deterministic Rules)

Any deterministic rule f(A|KA?) = δ(A− A(KA?)), where Dirac delta�

concentrates on a point A(KA?) ∈ A?, reaches the lower bound H of the

entropy H(f) = −
∫

A? f(A) ln(f(A)) dA.

H =

{
0 for discrete-valued action A

−∞ continuous-valued action A
. (79)

Proof Direct inspection solves discrete-valued case. In continuous-valued
case, the Dirac delta� is generalised function, which can be obtained as a
limit of positive pds [Vla79], say normal ones with the mean A(KA?) and
diagonal covariance with diagonal entry ε > 0 approaching to zero. For
such pds the entropy� equals 0.5`A ln(2πε)→ −∞ for ε→ 0. �
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Traditional Design with Constrained Entropy

Proposition 22 (Properties of Entropy-Constrained Traditional DM)

Let a system model� M be given and the traditional DM design� with a
performance index� I(B) be solved. The admissible strategy� S minimising
the expected performance index under the constraint∫

B?
fS(B) ln(S(B)) dB =

∫
B?

M(B)S(B) ln(S(B)) dB ≤ H̄ < −H, (80)

attains the constraint (80), and approaches the optimal Bayesian strategy
when H̄ → −H.

Proof It is a direct consequence of Propositions 11 and 21. �
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Entropy-Constrained Traditional DM

Proposition 23 (FPD Is Entropy-Constrained Traditional DM)

The traditional DM design� with the entropy constrained by H̄ < −H̄ (80)
⇔ FPD with determined by

the ideal pd�
IH̄f(B) =

M(B) exp
[
− I(B)

λ(H̄)

]
∫

B? M(B) exp
[
− I(B)

λ(H̄)

]
dB

> 0. (81)

The multiplier λ(H̄) > 0 goes to zero for H̄ → −H and the optimal
strategy converges to the optimal strategy� of the traditional DM design�.

Proof Kuhn-Tucker theorem [KT51] implies that the task reduces to

IH̄S ∈ Arg min
S∈S?

∫
B?

[
I(B) + λ(H̄) ln(S)

]
fS(B) dB

= Arg min
S∈S?

D(fS|| IH̄f) with IH̄f(B) (81).

Limiting properties are implied by Proposition 22 describing the behaviour
for a gradually relaxed constraint (80). �
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FPD Is Proper Dense Extension of Traditional DM

A generic optimal strategy obtained by FPD� are randomised, see
Proposition 20. Thus, it holds.

Proposition 24 (FPD vs. Standard Bayesian DM)

Any traditional DM design� can be approximated to an arbitrary
precision by the FPD problem with the ideal pd (81) when selecting
sufficiently small positive λ(H̄).

There are FPD’s having no standard counterpart.
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On Interpretations of Constrained Entropy

Remark 15

The constraint (80) is connected with Agreement 1. The optimal
strategy� is to be implemented and actions transmitted through a real
interface. At least for real-valued actions, no communication channel
(computer, sensor, actuator) transmits them without distortion: no
deterministic strategy is exactly implementable.

The constraint (80) can be related to constraints on computational
complexity or deliberation effort [Per55], to “rational inattention”
[Sim02] or to a numerical solution with Boltzman machine [SBPW04].

The presented ideal pd helps practically: designers are trained to
construct a loss� quantifying the design aim�. The formula (81)
decreases the natural barrier to FPD�. Moreover, it enables the use of
data for correction of the ideal pd�,i.e. the data-dependent estimation
of preferential ordering�.
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DM Elements

The most general FPD� operates on the DM elements.
DM elements are specified for discrete time t ∈ t? up to decision
horizon� h <∞. The behaviour� B = (X h,Dh) = (X h,∆h,Ah)=
(hidden,data record�) = (hiddens,action�,observation�) belongs to set

B? = (X h?,Dh?) = (X h?,Ah?,∆h?). They consist of
admissible strategy� given by decision rule�s with pds meeting natural
conditions of DM� f(At |X t−1,Kt−1) = f(At |Kt−1)
data record�s Dt = (At ,∆t) = (action�,observation�)∈ D?

t = Kt
? −K?t−1

observation model� f(∆t |Xt ,At ,Kt−1)
time evolution model� f(Xt |Xt−1,At ,Kt−1)
prior pd� f(X0,K0|A1) = f(X0|K0)f(K0) reflecting prior knowledge, cf.
(45)
ideal strategy If(At |X t−1,Kt−1)
ideal observation model If(∆t |Xt ,At ,Kt−1)
ideal time evolution model If(Xt |Xt−1,At ,Kt−1)
ideal prior pd If(X0,K0|A1).

Proposition 14 provides the predictor f(∆|At ,Kt−1) and the pd
f(Xt−1|Kt−1).
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Solution of General FPD

Proposition 25 (Solution of General FPD)

The strategy solving FPD with general DM elements� has the rules, t ∈ t?,

Of(At |Kt−1) =
exp[−ω(At ,Kt−1)]

γ(Kt−1)
, γ(Kt−1) ≡

∫
A?t

exp[−ω(At ,Kt−1)] dAt

ω(At ,Kt−1) = −
∫

∆?
t

f(∆t |At ,Kt−1) d∆t ln(γ(Kt)) (82)

−
∫

X?
t−1

f(Xt−1|Kt−1) dXt−1

{
ln( If(At |Xt−1,Kt−1))

+

∫
X?

t

f(Xt |Xt−1At ,Kt−1) dXt

[
ln

(
f(Xt |Xt−1,At ,Kt−1)
If(Xt |Xt−1,At ,Kt−1)

)
+

∫
∆?

t

f(∆t |Xt ,At ,Kt−1) d∆t ln

(
f(∆t |Xt ,At ,Kt−1)
If(∆t |Xt ,At ,Kt−1)

)]}
.

The recursion starts with γ(Kh) ≡ 1 and runs backwards.
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Proof Let us define the loss-to-go� corresponding to FPD

− ln(γ(Kt−1)) = min
{f(Aτ |Kτ−1)}h

τ=t

h∑
τ=t

∫
∆?
τ ,A

?
τ ,X

?
τ ,X

?
τ−1

f(∆τ ,Aτ ,Xτ ,Xτ−1|Kτ−1)

× ln

(
f(∆τ ,Aτ ,Xτ ,Xτ−1|Kτ−1)
If(∆τ ,Aτ ,Xτ ,Xτ−1|Kτ−1)

)
d∆τ dAτ dXτ dXτ−1.

The form of KLD� implies that γ(K0) coincides with its minimum and
minimising decision rule�s form the optimal strategy in FPD sense and

− ln(γ(Kt−1)) = min
f(At |Kt−1)

∫
A?t

f(At |Kt) ln

(
f(At |Kt−1)

exp(−ω(At ,Kt−1))

)
dAt

ω(At ,Kt−1) =

∫
∆?
τ ,X

?
τ ,X

?
τ−1

f(∆τ |Aτ ,Xτ ,Kτ−1)f(Xτ |Aτ ,Xτ−1,Kτ−1) ln

(
f(∆τ |Aτ ,Xτ ,Kτ−1)f(Xτ |Aτ ,Xτ−1,Kτ−1)f(Xτ−1|Kτ−1)

γ(Kt)If(∆τ |Aτ ,Xτ ,Kτ−1)If(Xτ |Aτ ,Xτ−1,Kτ−1)If(At |Xt−1,Kt−1)If(Xτ−1|Kτ−1)

)
× f(Xτ−1|Kτ−1) d∆τ dXτ dXτ−1

This and (82) exploit marginalisation�, normalisation�, chain rule�, natural
conditions of DM�, Fubini theorem [Rao87b] and KLD� minimiser. �
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Constructing of Design Elements
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This part provides a (still incomplete) methodology of quantitative
construction of DM elements� from elements that are expected to be
available practically.

Primarily, the use of FPD�, that covers traditional DM design�,
assumes ability to specify:

system model� given by the pd M (50);
the ideal pd�

If = IM IS specifying DM preferences, constraints and risk
attitude.

They are discussed here.

The discussion of the inevitable specification of

admissible strategies S? among which the optimal strategy�
OS (71) is

searched for;
knowledge K?, data D?, hidden’ H? and actions’ A? sets on which the
involved functions act;

as well as abilities to evaluate the strategy OS, i.e. store, integrate
and optimise functions in Proposition 25 and finally apply OS, are
postponed.
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Solution Concept and Local Notation

Approximation of pds and extension of a partially specified pd are
basic tools for practical construction of DM elements.

These problems are formulated as specific supporting DM tasks. They
are also formulated and solved as the FPD.

The DM constituents of the supporting DM task are denoted by
calligraphic counterparts of symbols used in the supported DM task in
order easily recognise DM elements� of the supporting DM task.

Technicalities connected with infinite-dimensional random variables
are avoided by assuming the behaviour B ∈ B? (of the supported
DM) to have a finite number of instances |B?| <∞. Consequently,
the inspected pds f of the supported DM

f ∈ f? ⊂ f?4 =

{
f(B) : f(B) ≥ 0,

∫
B?

f(B) dB = 1

}
(83)

are finite dimensional vectors.

Pds like F(B, f) of the supporting DM thus make a good sense.
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On Partially Specified Ideal Pd

Decision maker has to specify the ideal closed loop model� on whole
behaviour B. Often, a part iB influences its preferential ordering� and
the rest uB serves as a knowledge source only.

In the factorised ideal pd,

If(B) = If( uB| iB) If( iB) (84)

the decision maker is able or willing to specify If( iB) only.

In order to leave as much freedom to the design� as possible, we must
not enforce anything above the designer’s (user’s) wishes. Thus, we
have to let the design decide on the distribution of quantities uB – we
have to “leave them to their fate” [KBG+06],

leave to the fate means that the ideal pd of B = ( uB, iB) has the
form If(B) = If( uB| iB) If( iB) = f( uB| iB) If( iB), where the pd
f( uB| iB) results from the FPD� with this ideal pd.
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Approximation of Known Pd as FPD: Closed Loop Model

Often, a pd f constructed from the available knowledge is too complex to
be treated by an imperfect decision makers and has to be approximated by
a pd f̂ ∈ f̂? ⊂ f?4 (83). Approximation is a supporting DM problem with
the following specification.

The considered action� A = f̂ uses knowledge� KA? = f = the
approximated pd and faces the ignorance� GA? = B = the behaviour
of the supported DM task.

The behaviour� of the supporting DM is B = (B, f̂, f) =(behaviour of
the supported DM, its approximate pd, its approximated pd).

The adopted system model� F(GA? |A,KA?) = F(B |̂f, f) = f(B) uses
the fact that the pd f models B. It combines with the optimised
decision rule� S (̂f|f) into the closed-loop model�

F(GA? ,A|KA?) = f(B)S (̂f|f).
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Approximation of Known Pd as FPD: Ideal Model

The ideal closed-loop model� is specified as

IF(GA? ,A|KA?) = IF(B, f̂|f) = f̂(B)S (̂f|f).

The choice of the first factor means that the approximating pd is to
describe ideally the behaviour of the supported DM task.

The choice of the second factor expresses a lack of additional
requirements on the constructed decision rule� S(̂f|f). The decision
rule resulting from the design is accepted as the ideal one, the leave
to the fate� option is used.
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Approximation of Known Pd as FPD: Solution

With the options made, KLD� (71) of FS on IF is linear in
S(A|KA?) = S (̂f|f), i.e. the FPD solving the supporting
approximation task becomes traditional DM design�.

Basic DM lemma, Proposition 10, implies that the optimal decision
rule� solving the supporting approximation DM task is deterministic
and selects the optimal action�, i.e. the optimal approximation

Ôf ∈ Arg min
f̂∈f̂?

D(f||̂f). (85)

approximation principle is expressed by (85); its rather different
justification is in [Ber79].
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Approximation of Known Pd as FPD: Example

Example 8 (Approximation by Normal Pd)

Let a given pd f(B) is to be approximated by a normal pd�

f̂(B) = NB(B̄,C ) = |2πC |−0.5 exp[−0.5(B − B̄)′C−1(B − B̄)], (86)

where the approximating pds f̂ are parameterised by the expected value B̄
and the positive definite covariance matrix C . The optimal approximation
Ôf(B) = NB( OB̄, OC ) in the sense (85) is

( OB̄, OC ) ∈ Arg min
B̄,C

D(f||NB(B̄?,C ?)) (87)

= Arg min
B̄?,C?

[ln |C |+ Ef [(B − B̄)′C−1(B − B̄)]

= (Ef [B], covf(B)),

OB̄, OC coincide with the expectation and the covariance of the
approximated pd: the approximating pd matches the moments.
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Approximation of Unknown Pd as FPD: Behaviour

Unlike the approximation discussed above, here, the knowledge about the
approximated pd is now more vague and the supporting action is a priori
randomised. The addressed supporting DM problem is specified as follows.

The action� A = F(f) ∈ F? is a pd on the unknown pds f describing
the behaviour� B of the supported DM.

The knowledge� about the approximated pd� f is incomplete

KA? : f ∈ f? ⊂ f?4, see (83), (88)

f0 ∈ f?4 is the best prior (possibly flat) guess of f.

The ignorance� GA? = (B, f) = (behaviour, its pd) of the supported
DM.

The behaviour� B = (GA? ,A,KA?) = ((B, f),F(f), (f0, f
?)) =

((behaviour of supported DM, its pd f),pd of f,(prior guess of
f ∈ f?4,f?)).
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Approximation of Unknown Pd as FPD: Models

The considered system model�

F(GA? |A,KA?) = F(B, f|F(f), (f0, f
?)) = f(B)F(f)

uses that the pd f models B and the action F(f) is the pd of f ∈ f?.

The optimised randomised decision rule� S(A|KA?) completes the
specification of the closed-loop model�

F(GA? ,A|KA?) = f(B)F(f)S(A|KA?)

The ideal closed loop model� is specified as

IF(GA? ,A|KA?) = f0(B)F(f)S(A|KA?). (89)

The choice (89) says that f0(B) is taken as the best available
description of the behaviour� B and there are no additional
requirements on the constructed action� F(f) and the decision rule
S(A|KA?) generating it. The results of the design� are accepted as
the ideal ones, the leave to the fate� option is used.
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Minimum KLD Principle Provides Solution

Due ro the leave to the fate� option, the action� and the decision rule�

enter the optimised KLD� linearly. It implies that the optimal decision
rule� and the optimal action� are deterministic with a full mass on

Of ∈ Arg min
f∈f?

D(f||f0). (90)

The result (90) coincides with

minimum KLD principle recommends to complete knowledge�

expressed by the set f? and the prior guess f0 according to (90). It
reduces to the maximum entropy principle if f0 is uniform pd.
Both principles are axiomatically justified in [SJ80] for the set f? ⊂ f?4
specified by given values µ of linear functionals given by a vector
kernel φ:

∫
B? φ(B)f(B) dB = µ on f?4 (83).
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Examples Related to Minimum KLD Principle

Example 9 (Uniform Pd Maximises Entropy)

Let f? = f?4 (83), i.e. no constrain is put on f. Then, properties of

KLD�, Proposition 17, imply that the optimal pd Of in (90) coincides
with the prior guess f0 (88).

The maximum entropy principle� coincides with the minimum KLD
principle� for uniform prior guess. This makes a bit “circular”
conclusion that uniform pd maximises entropy.
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Examples Related to Minimum KLD Principle (cont.)

Example 10 (Exponential Pd)

Let f? ⊂ f?4 (83) be specified by a given B̄ = Ef [B]. Then, the optimal pd
Of in (90) minimises Lagrangian

Of ∈ Arg min
f?4

D(f||f0) + λ′Ef [B] (91)

= Arg min
f?4

D

(
f

∣∣∣∣∣
∣∣∣∣∣ f0 exp(−λ′B)∫

B? f0 exp(−λ′B) dB

)
=

f0 exp(−λ′B)∫
B? f0 exp(−λ′B) dB

with λ solving

B̄ =

∫
B?

B
f0 exp(−λ′B)∫

B? f0 exp(−λ′B) dB
dB

If B? = {B ≥ 0} and f0 is uniform on it then λi = 1/B̄i and Of becomes
exponential pd.
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Examples Related to Minimum KLD Principle (cont.)

Example 11 (Normal Pd)

Let f? ⊂ f?4 (83) be specified by a given B̄ = Ef [B], C = covf(B).

Then, the optimal pd Of in (90) has the form

Of ∝ f0 exp[−0.5(B − λ̄)′C̄−1(B − λ̄)] (92)

with Lagrangian coefficient λ̄, C̄ chosen to match moments B̄, C .

If B? is `B -dimensional real space and f0 is uniform on it then λ̄ = B̄
and C̄ = C , Of becomes normal pd� NB(B̄,C ) (86).
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Generalised Minimum KLD Principle

The following alternative to the knowledge� (88)

KA? : f ∈ f? ⊂ f?4, F0(f) ∈ F?, see (95), (93)

is the best available prior (flat) guess of the action A = F(f)

changes just the ideal pd (89) to

IF(B, f,F(f)|KA?) = f(B)F0(f)S(A|KA?). (94)

It respects that f models B, takes F0(f) as the best prior guess of
A = F(f) and leaves the ignorance� (B, f) and the decision rule�

S(A|KA?) to their fate.

The resulting choice of the deterministic decision rule� generalises to

OF ∈ Arg min
F∈F?

∫
f?
F(f) ln

(
F(f)

F0(f)

)
df (95)

F? = pds acting on f?, see (83).

generalised minimum KLD principle is expressed by (95).
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Use of Solutions of the Supporting DM Tasks

A real decision maker is

imperfect decision maker , which is characterised (i) inability to
specify all needed DM elements�; (ii) perform in available time and
with available computational resources all evaluations needed.
Thus, tools are needed that (i) convert practically available knowledge

� and practically specified preferences� into DM elements�; (ii) respect
limited cognitive resources of decision maker.

The subsequent sections use the approximation methodology (85),
the minimum KLD principle� (90) and its generalised version (95) for
constructing DM elements� from practically available knowledge
pieces. They address the feature (i) of imperfect decision maker�.
The feature (ii) is addressed only fragmentally in Sections 25, 29.
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Extension of Deterministic Models to Pds

Prior non-probabilistic knowledge can often be expressed by restricting
the simplex f?4 (83) to the set f? in (88) via values µκ = 0 of several
functionals, indexed by κ ∈ κ? = {1, 2, . . . , |κ?|}, |κ?| <∞,

Ef [φκ] =

∫
B?
φκ(B)f(B) dB = 0. (96)

Indeed, decision makers often exploit deterministic models resulting
from first principles and application-domain-specific knowledge. They
are mostly expressed by a set of equations

φκ(B) = εκ(B), (97)

where εκ(B), κ ∈ κ?, are modelling errors. The constraints (96) then
simply express the expectation that modelling errors are unbiased.

Known ranges ε?κ(B) of modelling errors can be modelled in the same
way. It suffices to take φκ(B) = indicator of the sets ε?κ(B), B ∈ B?.
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Extension of Deterministic Models to Pds (cont.)

If the expectation that modelling errors are out of a given range is too
high, the (second) moments serve well for error characterisation.

Known ranges of the quantities forming the behaviour can be
respected via range indicators or second moments, similarly as
modelling errors.

After specifying the set f?, the minimum KLD principle (90) is applied
and possibly followed by the approximation of the obtained f = Of by
a feasible f̂ according to (85).

The needed prior guess f0 is mostly chosen as a soft delimitation of
the support B? of the involved pds.

An algorithmic implementation may indeed support well an imperfect
decision maker�, e.g. [KBG+11].
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Merging of Incompletely Compatible Pds: Problem

The set f?, specified by conditions Ef [φκ] = 0,, ∀κ ∈ κ?, can be
empty when the processed knowledge pieces are incompatible. Then,
a meaningful solution of (90) does not exist.

By considering various “compatible” subsets of these conditions, say
considering them individually, we get a collection of different pds
fκ ∈ f?4 (83) that have to be combined into a single representant f̂.

This is a prototype of the supporting merging DM task that has to be
resolved when serving to an imperfect decision maker�.

Especially, the merging is believed to be an efficient tool for solving,
otherwise extremely hard, problems of de-centralised decision making
[BAHZ09]. The representant f̂ of (fκ)κ∈κ? is found via the generalised
KLD principle (95).
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Merging of Incompletely Compatible Pds: Formalisation

The behaviour B ∈ B? is assumed to be described by an unknown pd
f ∈ f? ⊂ f?4, i.e. the pair (B,F ) forms ignorance� of the supporting
merging DM task.

The pd A = F(f) is the action to be chosen.

The knowledge� KF? is delimited by the specialisation of (93)

KF? :

EF [D(fκ||f)] ≤ βκ <∞, κ ∈ κ? = {1, . . . , |κ?|}, |κ?| <∞,
F0(f) = prior (flat) guess of the action F ∈ F?, see (95)

fκ(B) are given pds in f?4, see (83). (98)

The constraints on the expected KLD of fκ on f mean that pd f is an
acceptable compromise with respect to a given fκ, if the pd� f is a
good approximation of the pd fκ, cf. (85).
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Merging of Incompletely Compatible Pds: Solution

The generalised minimum KLD entropy principle� guides the merging.

Under constraints (98), the optimal action OF ∈ F? is defined by
(95) and minimises the Kuhn-Tucker functional [KT51], given by
multipliers λκ ≥ 0,

OF ∈ Arg min
F∈F?

∫
(B?,f?)

F(f) (99)[
f(B) ln

(
F(f)

F0(f)

)
+
∑
κ∈κ?

λκfκ(B) ln

(
fκ(B)

f(B)

)]
d(B, f).

The minimiser providing the optimal solution has the form

OF(f) ∝ F0(f)
∏

B∈B?

f(B)ρ(B) with

ρ(B) =
∑
κ∈κ?

λκfκ(B), λκ ≥ 0 respecting inequalities in (98)

and being zero when the bound is not reached.
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Merging of Incompletely Compatible Pds: Solution (cont.)

For the conjugate prior� pd in the form of Dirichlet pd�

[Ber85, KBG+06],

F0(f) ∝
∏

B∈B?

f(B)ν0(B)−1 with ν0(B) > 0,

∫
B?
ν0(B) dB <∞,

the pd OF(f) (93) is also Dirichlet pd given by
ν(B) = ν0(B) + ρ(B) = ν0(B) +

∑
κ∈κ? λκfκ(B).

The Dirichlet pd determined by ν(B) has the expected value, which is
a “point” representant of incompletely compatible pds fκ, κ ∈ κ?,

f̂(B) = E OF [f(B)] =
ν0(B) +

∑
κ∈κ? λk fκ(B)∫

B? ν0(B) dB +
∑

κ∈κ? λκ
. (100)

Is is convex combination of the merged pds and normalised ν0(B).

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 172 / 393



Remarks on Merging

The derived merging (100) justified and extends the heuristically
motivated arithmetic pooling [Ber85, GKO05].

A related derivation called supra-Bayesian merging can be found in
[Seč10].

The combination of pds (100) provides an invaluable tool for sharing
knowledge and preferences among decision makers indexed by κ ∈ κ?
[KGBR09].

Often, the decision makers can characterise the knowledge or
preferences, possibly with help of minimum KLD principle, only via a
conditional (marginal) version of the pd fκ(B).

fragmental pd is a common name we use for all possible marginal and
conditional pds derived from fκ(B).

An extension of a fragmental pd� to the pd on B? is addressed in the
subsequent text.
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Extensions of Pds: Formalisation

A finite collection of decision makers, indexed by κ ∈ κ?, operates on
the behaviour� B that includes all quantities considered by them.

A specific κth decision maker� splits the behaviour

B = (Uκ,Gκ,Kκ) = (101)

part (uninteresting for, modelled by, known to) κth decision maker.

The pd efκ(B) extending the pd fκ(Gκ|Kκ) is the action� A of this
supporting extension DM task. It belongs to the set

efκ ∈ efκ
? ≡ {pds ef(B) on B? such that ef(Gκ|Kκ) = fκ(Gκ|Kκ)} (102)

The knowledge� KA? of the supporting DM task is the merger (100)
evaluated for extensions of fragmental pd�s

êf(B) =
ν0(B) +

∑
κ∈κ? λk

efκ(B)∫
B? ν0(B) dB +

∑
κ∈κ? λκ

, (103)

with λκ > 0 chosen so that D( efκ|| êf) = βκ or λκ = 0, κ ∈ κ?.
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Extensions of Pds: Solution

The pd êf(B) is the best representative (merger) of the supplied
extensions. Thus, it makes sense to select κth extension as its best
approximation.

Proposition 26 (The Optimal Extension)

The pd
efκ(B) = êf(Uκ|Gκ,Kκ)fκ(Gκ|Kκ) êf(Kκ), (104)

is the unique extension in the set (102) that minimises KLD� of êf on efκ.

The pds êf(Uκ|Gκ,Kκ) and êf(Kκ) are conditional and marginal pds of

the pd êf(B).

Proof By a straightforward evaluation, see also [KGBR09]. �
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Concluding Remarks

The mapping of non-probabilistic knowledge or preferences on pds is
a formally straightforward application of the minimum KLD principle�

possibly combined with approximation of the result by a feasible pd.

Extension of the fragmental pd�s (104) and the merging (103) of
several extensions lead to the implicit formula for the optimal merger
êf(B)

êf(B) =
ν0(B) +

∑
κ∈κ? λk

êf(Uκ|Gκ,Kκ)fκ(Gκ|Kκ) êf(Kκ)∫
B? ν0(B) dB +

∑
κ∈κ? λκ

, (105)

This implicit equation is conjectured to have, not necessarily unique,
solution with unique fragmental pds êf(Gκ|Kκ), κ ∈ κ?.

Algorithmic solution of the individual subtasks, especially of (105), is
in its infancy.
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Need for Approximations
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The presented methodology provides a complete formal solution of
the optimal DM� under uncertainty. However, the solution of
practically optimal design� is missing. The design complexity is not
under a systematic control.

This part introduces and discusses principles of that represent
promising and well developed concepts of coping with the design
complexity. Further on, just the direction called adaptive systems� is
developed.
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Core of Approximation Problems

Parts 8 and 9 provide a quite general solution of DM� uncertainty.
The solution operates on the pd fS (B) = M(B)S(B) (50) describing
all possible realisations� of the behaviour� that includes all quantities
considered by the decision maker� within the time interval determined
by the decision horizon�.

Within the considered FPD� DM preferences are described by an ideal
counterpart IfS (B) = IM(B) IS(B) of the closed loop model�
fS (B) = M(B)S(B).

Thus, DM operates with a pair of scalar functions acting on the space
B? of an extremely high dimension, which makes the exact DM
design exceptional.

Further text indicates the available directions for coping with the problem.
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Distributed Systems: Solution Direction

Distributed DM systems are based on splitting an unmanageable DM task
in DM problems dealing with subparts with respect to considered

quantities,

time horizon,

domains of quantities,

models considered,

subproblems faced.

The key induced problem How to make splitting? has either heuristic or
specific solutions for specific classes of problems.
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Hierarchic Systems: Solution Direction

Distributed systems have to be equipped with a methodology that says
How to “glue” together particular solutions?.
Practically, it is solved via hierarchic solutions in which “higher” DM levels
influence lower levels using a sort of aggregation.
The key problems faced are the designs of

the hierarchy structure,

the aggregation ways allowing the upper levels to grasp practically
DM elements.

Good solutions have to find a proper balance between achievable quality
and scalability of the solution.
Note that inevitable uncertainties, additional delays, transaction costs
connected with complex distributed and hierarchical dynamic systems may
lead to unpredicted emerging behaviours. Simulations and techniques
known from statistical physics are, for instance, used to such predictions.
They serve well for analysis but not to design purposes. A general
systematic design does not seem to exist.
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Adaptive Systems: Solution Direction

Adaptive systems use a specific feature of DM: the application of the
strategies resulting from the design� requires them to be good at the
realisation� of the behaviour�, which start from the available
realisation of the knowledge.

Thus, it is sufficient to know a good approximation of the optimal
strategy locally around the actual knowledge realisation. It can often
be found. Such local approximations are known as adaptive systems
[Kár98].

Many features used by adaptive systems are of the distributed or/and
hierarchical nature. Without commenting it, we stay with the
adaptive systems� leaving the former directions out of the scope of
this text. vb in fpd
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Adaptive Systems as Local Approximations

Remark 16

Note that there is no formal definition of adaptive systems. Their
operational description is, for instance, in [AW89].

We found the coined understanding of adaptive systems as local
approximations very useful. It helps us to have a unified view on
existing practical strategies and opens a way for designing novel ones
[Kár98]. Moreover, it shows that the adaptive systems will be
inevitably used in future due to the theoretically provable need for
local approximations.
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Feasible and Approximate Learning
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The presented theory covers an extreme width of DM tasks. Just a
few of them are solvable exactly and to some there are well
established approximate solution techniques. Both are reviewed here.

The summarised material does not cover full width of theory due to
the limited

coverage by the contemporary research,
knowledge of lecturer,
time.

The presentation focuses predominantly on learning based on
parameter estimation with time invariant hidden quantities.
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Factorised Parametric Model: Scalar-Observation Model
Suffices

The chain rule� allows us to decompose any parametric model�

f(∆t |Θ,At ,Kt−1) =

`∆∏
i=1

f(∆t;i |Θ,At ,∆t;i+1, . . . ,∆t;`∆
,Kt−1). (106)

factor is the pd modelling a single entry ∆t;i of observation� in (106).

A factor is the basic object we deal with further on as its use

is simpler than models predicting multivariate observations,
allows a fine modelling of individual observations (only a part of Θ can
enter respective individual factors),
serves well for modelling of
mixed observations , which are vectors containing both continuous and
discrete valued entries.
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Simplified Notation of Learning Part

In the factorised estimation, knowledge� Kt−1 is extended to
Kt;i = ∆t;i+1, . . . ,∆t;`∆

,Kt−1, where i points to the modelled
observation entry.

The pointer i and the additional condition ∆t;i+1, . . . ,∆t;`∆
are

mostly dropped within this part. Formally, thus we deal with the
parametric model� f(∆t |Θ,At ,Kt−1) modelling a scalar observation�

∆t .

Mostly, the parametric model� (factor�) is taken from the dynamic
exponential family� and mixtures of such models.
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Dynamic Exponential Family: Definition

exponential family (dynamic EF) consists of the parametric models,
which can be written in the form

f(∆t |Θ,At ,Kt−1) = M(Ψt ,Θ) = A(Θ) exp 〈B(Ψt),C(Θ)〉 , given by (107)

data vector Ψ′t ≡ [∆t , ψ
′
t ] with `Ψ <∞; ′ is transposition

regression vector ψt , `ψ = `Ψ − 1 <∞, whose values are in a known
recursive way determined by the (enriched) knowledge Kt−1 so that

(Ψ?
t−1,D

?
t ) = (Ψ?

t−1,A
?
t ,∆

?
t )→ Ψ?

t (108)

〈·, ·〉 is the functional, linear in the first argument, typically,

〈X ,Y 〉 =


X ′Y if X , Y are vectors
tr[X ′Y ] if X , Y are matrices, tr is trace∑

ι∈ι? XιYι if X , Y are arrays with a multi-index ι,
(109)

A(·) is a nonnegative scalar function defined on Θ?,

B(·), C(·) are array functions of compatible, finite and fixed
dimensions; they are defined on respective arguments in Ψt

? and Θ?.
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Remarks on EF

Remark 17

The definition of the exponential family� requires non-standardly the
recursive updating of the data vector� Ψt . This recursion is the
practically important condition for dynamic DM we deal with.

Notice that equality is used in (107). The normalisation of this pd
must not spoil the considered exponent form. This makes the allowed
form rather restrictive. In the dynamic case with a nonempty
regression vector ψ, ARX� (normal, linear-in-parameter) model and
Markov chains� almost cover the exponential family.
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Textbooks Deal Mostly with Static EF

Some members of static EF� characterised by empty regression vector� are

Name Parametric model Observation ∆ Parameter

Exponential 1
λ exp

(
−∆
λ

)
∈ (0,∞) λ > 0

Poisson µ∆

Γ(∆+1) exp(−µ) ∈ {0, 1, . . .} µ > 0

Multinomial
∏

i∈∆? Θ
δ(i,∆)
i ∈ {1, . . . , |∆?|}

{
Θ∆ ≥ 0∑
∆∈∆? Θ∆ = 1

}
Normal 1√

2πr
exp

[
− (∆−µ)2

2r

]
∈ (−∞,∞) µ ∈ (−∞,∞), r > 0

Log-Normal 1
∆
√

2πr
exp

[
− ln2( ∆

µ )
2r

]
∈ (0,∞) µ > 0, r > 0

Euler gamma function
Γ(x) ≡

∫ ∞
0

zx−1 exp(−z) dx <∞ for x > 0. (110)

Kronecker delta is defined
δ(i ,∆) =

{
1 if i = ∆
0 if i 6= ∆

. (111)

The use of Proposition 15 reveals role of the exponential family�.
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Estimation and Prediction in EF

Proposition 27 (Estimation and Prediction in Exponential Family)

Let natural conditions of DM� hold and the parametric model� belong to
EF (107). Then, the predictive pd� has the form

f(∆t |At ,Kt−1) =
J(Vt−1 + B(Ψt), νt−1 + 1)

J(Vt−1, νt−1)
(112)

Vt = Vt−1 + B(Ψt), V0 = 0; νt = νt−1 + 1, ν0 = 0 (113)

J(V , ν) =

∫
Θ?

Aν(Θ) exp 〈V ,C(Θ)〉 f(Θ) dΘ, (114)

where f(Θ) is a prior pd�. The posterior pd� is

f(Θ|Kt) =
Aνt (Θ) exp 〈Vt ,C(Θ)〉 f(Θ)

J(Vt , νt)
(115)

with the likelihood�

L(Θ,Kt) ≡ L(Θ,Vt , νt) = Aνt (Θ) exp 〈Vt ,C(Θ)〉 . (116)
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Finite-Dimensional Sufficient Statistic

The further discussion needs a few statistical terms:

statistic is a (measurable) mapping acting on the estimation
knowledge�

When there is no danger of misunderstanding, statistic and its values
are not distinguished.

sufficient statistic V meets the identity f(Θ|Kt) = f(Θ|V(Kt)), i.e.
instead of the knowledge realisation it suffices to store realisation of
the statistic.

finite-dimensional statistic maps estimation knowledge� into a
finite-dimensional space whose dimension does not grow with
increasing observation time t.
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Remarks on EF

Without the recursively updating the data vector� Ψt the estimation
cannot be recursive, cf. (113).
The posterior pd� for a parametric model� in the exponential family�

has the fixed functional form (115), which is determined by the value
of the finite-dimensional sufficient statistic� Vt , νt .
EF essentially covers the set of parametric model�s admitting a finite
dimensional statistic�. It is the only “smooth” class with the
parametric-model support independent of Θ [Koo36]. The uniform
parametric model has Θ-dependent support and admits
finite-dimensional sufficient statistic, too. facestuniex

The parameter estimation coincides with the data-updating part of
filtering�. It admits finite-dimensional sufficient statistic if the
observation model� belongs to EF and the time evolution model� maps

f(Xt |Kt) ∝ A(Xt)νt|t+1 exp
〈
Vt|t+1,C(Xt)

〉
(117)

→ f(Xt+1|Kt) ∝ A(Xt+1)νt+1|t+1 exp
〈
Vt+1|t+1,C(Xt+1)

〉
.

Such a class of models is inspected in [Dau88].
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Estimation in EF with Conjugate Prior Pd

conjugate prior pd f(Θ) belongs to the same set f? of pds as the
posterior pd.
This definition makes a good practical sense if the set f? is
(substantially) smaller than the set of all pds on Θ?.

The pd
f(Θ) ∝ Aν0(Θ) exp 〈V0,C(Θ)〉χΘ?(Θ), (118)

determined by the finite-dimensional prior statistics V0, ν0 and a
non-negative function χΘ?(Θ) is conjugate to the exponential family�.
With it, the prediction and estimation formulas (112) and (115) are
valid if

V0, ν0 replace the zero initial conditions in (113),
the function χΘ?(·) is formally used as the prior pd.

Mostly, χΘ?(·) is

set indicator , which is equal to 1 on Θ? and zero otherwise.
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ARX Model: Normal Autoregressive-Regressive Model
Linear in Parameters with External Variables in Regression
Vector

ARX model describing ith factor is the parametric model� described
by the pd

f(∆t;i |Θ,At ,∆t;i+1, . . . ,∆t;`∆
,Kt−1) = M(Ψt ,Θ) (119)

= N∆t;i
(θ′ψt , r) = (2πr)−0.5 exp[−0.5r−1(∆t;i − θ′ψt)2]

= (2πr)−0.5︸ ︷︷ ︸
A(Θ)

exp{tr(ΨtΨ′t︸ ︷︷ ︸
B(Ψt )

(−0.5[−1, θ′]′r−1[−1, θ′])︸ ︷︷ ︸
C(Θ)

)}

Θ = (θ, r) = (regression coefficient,noise variance)

= (`ψ-dimensional vector, positive scalar)

ψt = ψ(At ,∆t;i+1, . . . ,∆t;`∆
,Kt−1) = regression vector

Ψt = [∆t;i , ψ
′
t ]′ = data vector�
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Justification of ARX Model

innovations εt = ∆t − E[∆t |Θ,At ,Kt−1] form zero-mean sequence,
uncorrelated with quantities in the conditioning.

ARX model is obtained by

assuming a finite constant conditional variance r of innovations.
assuming negligible errors E[∆t |Θ,At ,Kt−1] ≈ θ′ψt (Taylor expansion)
selecting the pd of innovations according to the maximum entropy
principle�.
bijectively transforming εt ↔ ∆t

Regression vector ψt of ith factor is any known non-linear function of
the action and of the (enriched) knowledge
At ,∆t;i+1, . . . ,∆t;`∆

,Kt−1 that allows a recursive evaluation of the
data vector�.
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Parameter Estimation for ARX Model

The likelihood� (115) becomes L(Θ,Kt) ≡ L(θ, r ,Vt , νt)

= (2πr)−0.5νt exp(−0.5r−1[−1, θ′]Vt [−1, θ′]′) (120)

having as the conjugate prior�
GiW Gauss-inverse-Wishart (Gauss-inverse-Gamma) pd

GiW(V0, ν0) ≡ (2πr)−0.5(ν0+`ψ+2) exp(−0.5r−1[−1, θ′]V0[−1, θ′]′)

J(V0, ν0)
(121)

J(V , ν) = Γ(0.5ν)( ∆V − ψ∆V ′ ψV−1 ψ∆V )−0.5ν
∣∣∣ ψV

∣∣∣−0.5
20.5ν(2π)0.5`ψ

V =

[
∆V ψ∆V ′
ψ∆V ψV

]
, (122)

is finite for a positive definite V (V > 0) and positive ν > 0.
Estimation provides posterior pds preserving GiW� form GiW(Vt , νt)

Vt = Vt−1 + ΨtΨ′t > 0, νt = νt−1 + 1 > 0 (123)

initiated by the statistic values of the conjugate prior (121).
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Relation to Least Squares (LS)

Let x denote 2r multiple of the exponent of the likelihood� (120). It
describes the posterior pd obtained for the flat prior with V0 = 0, ν0 = 0.

x =
t∑

τ=1

(∆τ − θ′ψt)2︸ ︷︷ ︸
prediction error

= Λt + (θ − θ̂t)′C−1
t (θ − θ̂t) (124)

Ct =

(
t∑

τ=1

ψτψ
′
τ

)−1

= LS covariance

θ̂t = Ct

t∑
τ=1

ψτ∆τ = Ct
ψ∆Vt = LS parameter estimate

Λt = ∆Vt − ψ∆V ′t
ψV−1

t
ψ∆Vt = ∆Vt − Θ̂′tC−1

t Θ̂′t = LS remainder

θ̂t = E[θ|Vt , νt ], coincidence is valid for V0 = 0, ν0 = 0

r̂t = E[r |Vt , νt ] =
Λt

νt − 2
, coincidence is valid for V0 = 0, ν0 = 0

r̂tCt = cov[Θ|Vt , νt ], coincidence is valid for V0 = 0, ν0 = 0.
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Comments on Parameter Estimation for ARX Model

extended information matrix is the name used for the statistics Vt .
The recursion for this matrix Vt = Vt−1 + ΨtΨ′t can be algebraically
transformed into

RLS , recursive least squares, update θ̂t , Ct , r̂t , [Pet81].

Usually, θ̂t and r̂t are interpreted as the best point estimates of θ and
r . For us, they form a part of sufficient statistic�.

The relation of RLS to the posterior pd and general asymptotic of
learning, Proposition 18, provide rich asymptotic results for RLS.

The non-trivial prior pd given by V0 > 0, ν0 > 0 guarantees that
Vt > 0, νt > 0: the prior pd� regularises the posterior pd�. In spite of
this RLS are numerically sensitive and problem is addressed by using

LDL′ decomposition of extended information matrix� V = LDL′, L
lower triangular matrix with unit diagonal, D diagonal matrix with
positive diagonal, [Bie77, Pet81, GV89, KBG+06].
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Markov Chain

If the data vector� Ψt ∈ Ψt
? = (∆?, ψ?) of a factor� has a finite

amount of realisation�s |Ψ?| <∞ then it is modelled by
Markov chain , which is the parametric model� described by the pd

f(∆t |Θ,At ,Kt−1) =
∏

Ψ∈Ψ?

Θ
δ(Ψ−Ψt )
∆|ψ = exp

∑
Ψ∈Ψ?

δ(Ψ−Ψt)︸ ︷︷ ︸
B∆|ψ(Ψ)

ln(Θ∆|ψ)︸ ︷︷ ︸
C∆|ψ(Θ)

Θ ∈ Θ? =

{
Θ∆|ψ > 0,

∑
∆∈∆?

Θ∆|ψ = 1 ∀ψ ∈ ψ?
}
.(125)

The conjugate prior� pd is
Dirichlet pd is defined on Θ? (125)

f(Θ) = DiΘ(V0) =
∏
ψ∈ψ?

∏
∆∈∆? Θ

V0;∆|ψ−1

∆|ψ

Be(V0;·|ψ)
(126)

Be(V·|ψ) =

∏
∆∈∆? Γ(V∆|ψ)

Γ(
∑

∆∈∆? V∆|ψ)
, Γ(x) =

∫ ∞
0

zx−1 exp(−z) dz , x > 0.
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Parameter Estimation and Prediction for Markov Chain

For the Markov Chain, the posterior pd� is Dirichlet pd� DiΘ(V ) given by

occurrence matrix V = (V∆|ψ > 0)Ψ∈Ψ? updates as follows

Vt;∆|ψ = Vt;∆|ψ + δ(Ψ−Ψt). (127)

The corresponding predictive pd� [KBG+06] has the form

f(∆|A, ψ,Kt−1) = E[Θ∆|ψ|A, ψ,Vt−1] =
Vt−1;∆|ψ∑

∆∈∆? Vt−1;∆|ψ
(128)

= relative frequency of occurrence of the data vector Ψ = [∆, ψ′]′.

The formula (128) relates the “classical” (frequency based) view on
probabilities to the presented Bayesian theory. For instance, the
asymptotic result on learning, Proposition 18, describes conditions
under which the relative frequencies converge to unknown
probabilities.
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Estimation out of EF

The EF� and special uniform pds provide a basic supply of dynamic factors
admitting finite-dimensional sufficient statistic�. What can be done for
other parametric models?
Under natural conditions of DM� (45), generalised Bayesian estimation�,
Proposition 15, updates the posterior pds according to the Bayes rule� (54)

f(Θ|Kt) =
f(∆t |Θ,At ,Kt−1)f(Θ|Kt−1)

f(∆t |At ,Kt−1)
, t ∈ t?.

Out of EF� (107), the complexity of these pds increases quickly with
increasing t.
This section inspects the recursive estimation applicable out of EF. The
outlined equivalence approach [Kul93, Kul94, Kul96] addresses the
problem systematically.
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Recursively Feasible Representation of Pds

Considered cases do no admit sufficient statistic�, thus instead of
f(Θ|Kt−1), we have to deal with its approximation by a pd f̂(Θ|Vt−1)
of a fixed functional form and determined by a finite dimensional
statistic Vt−1.

A given pd f̂(Θ|Vt−1) can be seen as approximation of a whole set
f?(Θ|Kt−1) of possible posterior pds.

First, we search for f̂(Θ|Vt−1) that can be updated recursively and
includes the exact posterior pd in the discussed equivalence set.
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Bayes-Rule Compatible Statistic

Proposition 28 (Equivalence-Preserving Mapping)

Let f?(Θ|Kt−1) be a set of pds f(Θ|Kt−1) with a common, time, data,
and parameter invariant support�. Let the mapping

Vt : f?(Θ|Kt−1)→ V ?
t−1 (129)

assign to each pd f(Θ|Kt−1) from f?(Θ|Kt−1) a finite-dimensional statistic
Vt−1 ≡ Vt(Kt−1) “representing” it. Then, the value of Vt−1 can be
exactly recursively updated using only its previous value and the current
parametric model� f(∆t |Θ,At ,Kt−1) iff Vt is a time-invariant linear
mapping Vt ≡ V, t ∈ t?, acting on logarithms of the pds involved. The
logarithmic pds are treated as functions of Θ.
V has to map Θ-independent elements to zero.

Riezs representation of V, [Rao87b], is – with an abuse of notation –
V(ln(f(Θ|Kt−1))) =

∫
Θ? V(Θ) ln(f(Θ|Kt−1)) dΘ,

∫
Θ? V(Θ) dΘ = 0.
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Proof of the Sufficiency

Proof To demonstrate necessity is rather difficult, and the interested
reader is referred to [Kul90a, Kul90b]. To show sufficiency of conditions
on Vt ≡ V, t ∈ t? it suffices to apply such V on the logarithmic version of
the Bayes rule (54) and use both time invariance and linearity of V. The
normalising term ln(f(∆t |At ,Kt−1)) is independent of Θ and as such
mapped to zero. The recursion for values of Vt is then

Vt = V [ln (f(∆t |Θ,At ,Kt−1))] + Vt−1, with (130)

V0 = V[ln(f(Θ))] ≡ V(ln(prior pd�)).

�

Formula (130) is the true recursion if we need not store complete past
observed data for evaluating the parametric model� f(∆t |Θ,At ,Kt−1).
Thus, as for EF�, we consider models f(∆t |Θ,At ,Kt−1) = M(Ψt ,Θ)
depending on a recursively updatable data vector� Ψt .
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Approximation in Data-Vector Space

The unknown posterior pd� should be approximated using the
(generalised) minimum KLD principle�. Instead of this non-elaborated
way, the problem is transformed into approximation of the unknown

empirical pd of data vector

ft(Ψ) ≡ 1

t

t∑
τ=1

δ(Ψ−Ψτ ), Ψ ∈ Ψ? ≡
⋃

t∈t?

Ψt
?. (131)

The value of statistic Vt (130) has the alternative expression

Vt = t

∫
Ψ?

ft(Ψ)

∫
Θ?

V(Θ) ln(M(Ψ,Θ)) dΘ︸ ︷︷ ︸
h(Ψ)

dΨ + V0. (132)

This value can be evaluated recursively

Vt = Vt−1 + h(Ψt). (133)
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Recursively Feasible Approximation of Empirical Pd

The posterior pd can be given the form

f(Θ|Kt) ∝ f0(Θ) exp

[
t

∫
Ψ?

ft(Ψ) ln(M(Ψ,Θ)) dΨ

]
. (134)

We search for the approximate posterior pd� in the form

f̂(Θ|Kt) ∝ f0(Θ) exp

[
t

∫
Ψ?

f̂t(Ψ) ln(M(Ψ,Θ)) dΨ

]
. (135)

The estimate f̂t(Ψ) of the unknown empirical pd of the data vector�
ft(Ψ) minimising the KLD D(̂f||̂f0) under the informational constraint∫

Ψ?
f̂(Ψ)h(Ψ) dΨ = (Vt − V0)/t (136)

has the form f̂t(Ψ) ∝ f̂0(Ψ) exp[λ′th(Ψ)], (137)

where the multipliers λt are chosen so that (136) is met for f̂ = f̂t .
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Algorithmic Summary

Off line phase consists of selecting

parametric model� f(∆|Θ,At ,Kt−1) = M(Ψt ,Θ) with data vector� Ψt ,
kernel V(Θ) defining Riezs representation�

an algorithm evaluating functions h(Ψ) =
∫

Θ?
V(Θ) ln(M(Ψ,Θ)) dΘ,

a prior pd� f(Θ) defining V0 =
∫

Θ?
V(Θ) ln(f(Θ)) dΘ,

a prior (flat) guess f̂0(Ψ) of the empirical pd of data vector�,

On line phase runs for t ∈ t? when Ψt are recursively updated

the stored statistic is updated Vt = Vt−1 + h(Ψt),
the empirical pd is approximated by f̂t(Ψ) ∝ f̂0(Ψ) exp[λ′th(Ψ)], where
the multipliers λt are chosen so that (136) is met.
The posterior pd is approximated by (135)

f̂(Θ|Kt) ∝ f0(Θ) exp
[
t
∫

Ψ?
f̂t(Ψ) ln(M(Ψ,Θ)) dΨ

]
.
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Remarks I

The kernel V, which can be a vector generalised function [Vla79],
represents the key tuning knob of the approach. Options leading to
discrete versions of the function and/or its derivatives, or M(Ψi ,Θ)
on a grid of Ψi have been tried with a success, but a deeper insight is
needed.

The name “equivalence approach” stresses the fact that the set of
posterior pds f? splits to equivalence classes. The posterior pds with
the same Vt cannot be distinguished.

The required commutation of the mapping V with the data updating�

of the posterior pds is crucial. The recursion for Vts is exact and the
approximation errors caused by the use of f̂(Θ|Vt) instead of f(Θ|Kt)
do not accumulate! Use of a noncommutative projection
Vt : f?(Θ|Kt)→ V ?

t is always endangered by a divergence as the
estimation described by the Bayes rule can be viewed as a dynamic
system evolving the functions ln(f(Θ|Kt−1)) at the stability boundary.
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Remarks II

The algorithm defining the vector function h(Ψ) via integrations
represent the computationally most demanding part of the algorithm.
The integrations can be performed in off-line mode if their results can
be efficiently stored (the resulting functions interpolated).

The solution of the nonlinear equation for Lagrangian multiplies λt is
also hard, but it is a standard problem.

We would like to get the exact posterior pd if the model belongs to
the exponential family (107). This dictates the choice of the mapping
V that should make h(Ψ) a bijective image of [B(Ψ), 1]. It is
sufficient, to introduce the prior initial moments of the vector
function V(Θ) ≡ [C(Θ), ln(A(Θ))].
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Tracking of Slowly Varying Parameters

The parameter estimation relies on time-invariance of parameters. If
this assumption is violated, the Bayesian filtering� is to be used. It
requires time evolution model� and its exact feasibility is even more
restricted than the parameter estimation. This stimulated interest in
intermediate case between parameter estimation and filtering, in

parameter tracking , which is estimation of slowly varying parameters
Θt ≈ Θt−1 with a simplified specification of time evolution model�.

Parameter tracking forms the core of many adaptive systems�. It
modifies local model according to realisation�s of behaviour.

Parameter tracking, approximate evaluation of pds f(Θt |Kt), is based
on a group of techniques called

forgetting , which tries to exploit for estimation of Θt the valid part
of Kt and discard invalid, typically obsolete, knowledge,
[Pet81, KK84, Kul86, Kul87, KZ93, MK95, KK96, CS00, KA09].

Here, we present the most advanced technique based on the developed
approximation, Section 20, and Bayesian testing of hypotheses.
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Formalisation of Tracking Problem

The relevant DM elements� are

the behaviour�
B = ((X h, (f(Θt |Kt−1))t∈t?)︸ ︷︷ ︸

hiddens

, (̂f(Θt |Kt−1))t∈t?︸ ︷︷ ︸
action

, Dh,K0︸ ︷︷ ︸
knowledge

) =

((time-varying parameters,exact posterior pds), optional
approximating pds, data records, prior knowledge),

the aim is to evaluate recursively f̂(Θt |Kt−1) ≈ f(Θt |Kt−1) for t ∈ t?,

observation model� is a given pd f(∆t |Θt ,At ,Kt−1),

time evolution model� is unspecified but f(Θt+1 = Θ|Kt) is hoped to
be close to the data-updated approximation

f̃(Θt+1 = Θ|Kt) ∝ f(∆t |Θ,At ,Kt−1)̂f(Θt = Θ|Kt−1) ⇒ (138)

D(f(Θt+1|Kt)||̃f(Θt+1|Kt)) ≤ γt+1 <∞. (139)

prior pd� f(Θ1|K0) describing prior knowledge� about Θ1 is given,

prior knowledge includes also the externally supplied (flat) alternative
pd ( af(Θt+1|Kt))t∈t? and values γt+1.
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Solution

The minimum KLD principle, Section 21, with the alternative pd
af(Θt+1|Kt) playing the role of a (flat) prior guess, and the inequality
(139) constraint, delimiting the knowledge passed from previous time
step, provide the optimal solution

f̂(Θt+1|Kt) ∝ f̃(Θt+1|Kt)λt af(Θt+1|Kt)1−λt . (140)

The range λt ∈ [0, 1],, that depends on the bound (139), results from
the addressed simple optimisation with a non-negative Kuhn-Tucker
multiplier.
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Remarks on Forgetting I

λ is called forgetting factor. It controls compromise between the
posterior pd obtained under the hypothesis that Θt is time invariant
and an externally supplied alternative pd af. The closer λ is to unity,
the slower changes are expected, i.e. the higher weight the posterior
pd corresponding to the time invariant case gets.

The older are data built in through the parametric model� the
stronger flattening is applied to its values. Consequently, the older
data influence the estimation results less than the new ones. Data are
gradually “forgotten”.

For af ∝ 1 and λ < 1, the time evolution reduces to flattening of the
pd obtained after data updating. It is intuitively appealing as our
uncertainty about the estimated parameters can hardly decrease
without knowing a good time evolution model (44) and with no new
information processed.
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Remarks on Forgetting II

The alternative pd af, typically, delimits where Θt can shift. The prior
pd is a typical, reasonably conservative, choice of the alternative pd.
Such nontrivial alternative pd prevents us to forget the “guaranteed”
information. This stabilises whole learning and reflects very positively
in its numerical implementations. Without this, the posterior pd may
become too flat whenever the information brought by new data is
poor.

Note that lack of information brought by new data is more rule than
exception. It is true especially for regulation [Mos94] that tries to
make the closed control loop as quiet as possible: it tries to suppress
any new information brought by data.

In the extreme case of uniform alternative, the solution is called
exponential forgetting otherwise it is called stabilised forgetting.
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Remarks on Forgetting III

The considered data updating of f̂ (138) models slow variations. This
model can be enriched by assuming at least partial variations. For
instance, time invariance is admitted with some probability only and
the description by the alternative pd is considered otherwise.

The forgetting operation (140) preserves the basic property of the
time updating: the posterior pd on parameters propagates without
obtaining any new measured information.

The forgetting factor λ can be either taken as a tuning knob or
estimated. The predictive pd parameterised by it, however, depends
on it in a very complex way so that a partitioned estimation has to be
applied when its posterior pd is estimated on a pre-specified grid
[ME76].

The practical importance of this particular case of estimating slowly
varying parameters cannot be over-stressed: the vast majority of
adaptive system�s rely on a version of forgetting.
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Forgetting in EF

Let the parametric model� belongs to EF� and the conjugate pd� is
considered given by sufficient statistic (Vt , νt).

Let us allow slow parameter changes with the forgetting factor
λ ∈ [0, 1] and the alternative conjugate pd given by the sufficient
statistic aVt ,

aνt . Then, the prediction and estimation formulas,
Proposition 27, remain unchanged with statistics evolving according
to the recursion

Vt = λ(Vt−1 + B(Ψt)) + (1− λ) aVt , V0 given,
νt = λ(νt−1 + 1) + (1− λ) aνt , ν0 given.
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... Omitted Topics

Useful examples like Kalman filtering [Pet81], i.e. stochastic filtering
with linear Gaussian models. Other classes include linear models with
restricted support [Pav08] and finite mixtures with factor�s from
exponential family� [KBG+06].

Monte Carlo techniques and their sequential variants known as
particle filters [BS04].

So called variational Bayes approximating a joint pds by product of
conditionally independent factors [ŠQ05].
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Feasible and Approximate Design
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The presented theory covers formally extreme width of tasks. Just a
few of them are solvable exactly and to some there well established
approximate solution techniques. Both are reviewed here.

The summarised material does not cover full width of theory due to
limited

coverage by the contemporary research,
knowledge of lecturer,
time.

The presentation focuses predominantly on data-based design�

combined with parameter estimation, i.e. time invariant hidden
quantities.
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Evaluation Problem

The optimal data-driven FPD� is described by Proposition 20, which
provides the optimal randomised decision rule�s

Of(At |Dt−1) = If(At |Dt−1)
exp[−ωγ(At ,D

t−1)]

γ(Dt−1)
, γ(Dh) = 1

γ(Dt−1) ≡
∫

A?t

If(At |Dt−1) exp[−ω(At ,D
t−1)] dAt , if t < h

ωγ(At ,D
t−1) ≡

∫
∆?

t

f(∆t |At ,D
t−1) ln

(
f(∆t |At ,D

t−1)

γ(Dt) If(∆t |At ,Dt−1)

)
d∆t .

While the evaluation of high-dimensional integrals can be conceptually
solved via Monte-Carlo techniques, the storing high dimensional
functions like ω(At ,D

t−1) is known to be computationally hard.

Practical, possibly approximate, evaluation of this strategy is
discussed starting from analytically feasible cases followed by common
approximation tricks adopted.
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Finite-Dimensional Information State

The predictive pd� is obtain via parameter estimation�, Section 25.
The feasible procedures led to f(∆t |At ,Kt−1) ≈ f(∆t |ψt ,Vt−1),
where the regression vector� ψ and the value of the sufficient statistic

� Vt−1 are finite-dimensional and allow recursive updating. They form

information state Xt−1 = (Ψt−1,Vt−1), which can be recursively
updated and knowledge� Kt−1 = Xt−1 = (Ψt−1,Vt−1) is
finite-dimensional. The predictive pd� and rule X ?

t−1 →Dt X ?
t define

state model f(Xt |At ,Xt−1) with an observable information state.

Without loss of generality the ideal pd� can be chosen so that it
depends on the information state, too. Consequently,

the functions occurring in FPD depend on the finite-dimensional
information state: γ(Dt−1) = γ(Xt−1), ω(At ,D

t−1) = ω(At ,Xt−1).
the optimal strategy explicitly influences both the primary quantities to
be intentionally influenced and learning process: this property was
observed in [Fel60, Fel61] and called dual control.
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FPD with Finite Number of Behaviour Realisations

If the information state�Xt and actions At have finite numbers of
realisation�s then the Proposition 20 provides directly the optimum

Of(At |Xt−1) = If(At |Xt−1)
exp[−ωγ(At ,Xt−1)]

γ(Xt−1)
, γ(Xh) = 1 (141)

γ(Xt−1) ≡
∑

A∈A?t

If(At |Xt−1) exp[−ω(At ,Xt−1)], if t < h

ωγ(At ,Xt−1) ≡
∑

X∈X?
t

f(Xt |At ,Xt−1) ln

(
f(Xt |At ,Xt−1)

γ(Xt) If(Xt |At ,Xt−1)

)
.

All functions ω(At ,Xt−1), γ(Xt) etc. are tables with amount of
entries given by |A?| and |X ?|. The complexity of evaluations
(summing over A?, X ?, storing of the tables) is also implied by them.

FPD is simple for small |A?|, |X ?| and infeasible for large |A?|, |X ?|.
The evaluation is slightly simplified if the stationary strategy�,
obtained for horizon� h→∞, Proposition 13, is considered.
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FPD with Linear Gaussian Information State: Formulation

Let the (observable information) state Xt be described by the linear
Gaussian (LG) model

f(Xt |At ,Xt−1) = NXt (AXt−1 + BAt ,
XR) (142)

NX (M,R) = |2πR|−0.5 exp[−0.5(X −M)′R−1(X −M)]

determined by known matrices (A,B, XR).

Let the ideal pd be also the linear Gaussian (LG) model

If(Xt |At ,Xt−1) = NXt ( IAXt−1 + IBAt ,
IR) (143)

If(At |Xt−1) = NAt ( ICXt−1,
AIR)

determined by known matrices ( IA, IB, IR, IC, AIR).

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 224 / 393



FPD with Linear Gaussian Information State: Solution

Proposition 29 (LG FPD)

Let the system with finite-dimensional information state Xt be described
by linear Gaussian (LG) model (142) and the ideal pd in FPD be also LG
given by pds (143) with AIR > 0. The optimal decision rule� is then

Of(At |Xt−1) = NAt (L′tXt−1,
ARt) with (144)

AR−1
t = AIR−1 + B′S−1

t B + (B− IB)′ IR−1
t (B− IB)

L′t = ARt

[
B′S−1

t + (B− IB)′ IR−1(2A− IA)
]

They are determined by positive semi-definite Riccati matrix S−1
t that

evolves

S−1
t−1 = AS−1

t A′+ (A− IA) IR−1(A− IA)′−LtRtL
′
t , with S−1

h = 0. (145)
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Proof Outline

Proof The proof exploits directly Proposition 20 for verifying that
γ(Xt) ∝ NXt (0,St), finding the decision rule and verifying the recursion
for S−1

t . Detail derivation is cumbersome but straightforward and exploits
(for a matrix Q > 0 and vectors n, x of compatible dimensions)

E[x ′Qx ] = E[x ′]QE[x ] + tr[Qcov(x)]

x ′Qx + 2N ′x = (x − x̂)′Q(x − x̂)− ζ with

x̂ = Q−1n, ζ = −x̂ ′Q−1x̂ .

�
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Remarks on LQ Design

The decision rule has the fixed form with “parameters” Lt ,
ARt

depending on parameters of systems and on those of the ideal closed
loop model. This

is the main source of feasibility,
allows to deal with time-dependent parameters, which arise in
approximate evaluations (linearisation, adaptive variants with
certainty-equivalence approximation).

The same design – called LQ (linear-quadratic) – dominates the
traditional design: Gaussian assumption is replaced by a quadratic
performance index. The matrix IR−1 corresponds with state
penalisation and the matrix AIR−1 action penalisation. This
qualitative observation has allowed to adapt the performance index to
observed behaviour: to learn the performance index�.

The term Riccati equation evolving the Riccati matrix S−1
t is

inherited from continuous time-domain.

Numerical solution requires a significant care: LDL′ type
decompositions of Riccati matrix are (and should) be used.
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Suboptimal Adaptive Design

The designs with small finite |A?|, |X ?| and LG formulation are only
exactly feasible cases. Generally, an approximate (suboptimal) design
is needed.

The dynamic design� essentially predicts possible behaviour of the
system interacting with the judged strategy and selects the most
favourable one.

The design complexity is significantly influenced by the richness of the
inspected space. Its reduction is behind the majority of available
approximation schemes.

All presented approximations are connected with adaptive systems,
Section 24, that approximate the optimal solution� in the
neighbourhood of the behaviour realisation� [Kár98].

The reader is referred to classical references
[KKK95, KHB+85, Mos94, AW89] for a detailed presentation of
adaptive systems.
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Classification of Complexity Causes

At the design stage, the complexity stems mainly from

complexity of the predictive pd� originating in complexity of
processing the parametric model� or the observation model� and the
time evolution model�, which relate the knowledge� and the optional
action� to the ignorance�.

richness of the ignorance� space that has to be inspected for the
choice of the optimal action�.

The suboptimal design tries to reduce the influence of one or both of these
sources of complexity. The selected techniques described below are
suitable to the design of the adaptive systems�.
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Approximation of Predictive Pd

A substantial degree of the design complexity is caused by the use of
predictive pd�s (f(∆τ |Aτ ,Kτ−1))h

τ=t obtained through the Bayesian
filtering� or estimation�, Propositions 14, 15). They have the form

f(∆τ |Aτ ,Kτ−1) =

∫
X?
τ

f(∆τ |Xτ ,Aτ ,Kτ−1)f(Xτ |Kτ−1) dXτ . (146)

For a relatively short distance to the horizon� h, the predictive pds
(146) can be approximated by

f(∆τ |Aτ ,Kτ−1) ≈
∫

X?
τ

f(∆τ |Xτ ,Aτ ,Kτ−1)̂fτ (Xτ |Kτ−1) dΘ, (147)

with a simpler pd f̂(Xτ |Kτ−1) ≈ f(Xτ |Kτ−1).

Approximation of time updating� formula as well as usual numerical
approximations of (146) (like Monte Carlo) can be interpreted as the
approximation (147).
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Passive Approximation

The need to evaluate predictive pd for all possible realisations of
future knowledge is a substantial source of complexity. The extreme
simplification assumes that a reasonable approximation of f(Xτ |Kτ−1)
is constructed from the known knowledge realisation Kt−1, for all
τ = t, . . . , h.

passive approximation constructs

f̂(Xτ |Kτ−1) = f̂(Xτ |Kt−1) ≈ f(Xτ |Kτ−1). (148)

The term passive stresses the assumption that the general influence of
actions on future learning is given up. The future learning and
predicting are treated as if they run with the learning stopped.

active approximation is any approximation, which is not passive, i.e.
models influence of actions on the future learning
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Certainty-Equivalence Approximation

This approximation gets the approximate predictive pd� by inserting a
point estimate X̂τ |τ of Xτ into the observation model�. X̂t

f(∆τ |Aτ ,Kτ−1) ≈ f(∆τ |X̂τ |τ ,Aτ ,Kτ−1). (149)

It corresponds to the approximation

f(Θ|Kτ−1) ≈ f̂(Xτ |Kτ−1) ≡ δ(Xτ−X̂τ |τ ), τ = t, . . . , h, where (150)

δ(·) is Dirac delta�.

Note that the second index of X̂τ |τ stresses that the point estimate is
constructed using knowledge Kτ−1, i.e. it is active approximation�.

The most wide spread one is passive certainty-equivalence
approximation

f(Θ|Kτ−1) ≈ f̂(Xτ |Kτ−1) ≡ δ(Xτ − X̂τ |t), τ = t, . . . , h, where (151)

X̂τ |t is a point estimate of Xτ based on Kt−1 only.
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Cautious Approximation

The certainty-equivalence approximation� works well if the pds
f(Xτ |Kτ−1) or f(Xτ |Kt−1) are well concentrated around X̂τ |τ or X̂τ |t .

If there is a relatively high uncertainty about precision of the best
point estimate X̂τ |τ , it is reasonable to include its description Cτ |τ
(say, covariance matrix) into the approximating pd, to use

cautious approximation uses both the point estimate of unknown Xτ
and a description Cτ |τ of its uncertainty

f(Xτ |Kτ−1) ≈ f̂(Xτ |X̂τ |τ ,Cτ |τ ), τ = t, . . . , h. (152)

super-cautious approximation is the passive version of the cautious
strategy, i.e.

f(Xτ |Kτ−1) ≈ f(Xτ |Kt−1)̂f(Xτ |X̂τ |t ,Cτ |t), τ = t, . . . , h. (153)

The name reflects the pessimism about future learning abilities.
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Fight with Passivity

Mostly, the active approximation�s are still to complex. Thus, passive
approximation�s dominate. They are made active via the following
ways.

An external stimulating signal is fed into the closed DM loop. It is
added to optional quantities like inputs or set points. It improves
learning conditions at the cost of deteriorating the achievable quality.
A term reflecting learning quality even under a passive-type design is
added to the original loss� [JP72]. The design is usually numerically
demanding and sensitive to the relative weight of the added term.

Experience indicates that strategies exploiting active approximations
gain just a little for design with linear models. The passivity may,
however, result in completely bad performance in the case of
controlled Markov-chain models [Kum85]. Systematic attempts to
solve this difficult problem are rare; see reference in [FE04].
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Reduction of Search Space

We outline common techniques oriented on simplification of the
optimisation space.
Essentially, two directions can be recognised.

Influence of long horizon on problem complexity is suppressed.
The value function� is finitely parameterised and these parameters are
estimated.

It is worth repeating the advantage of FPD�: instead of
approximating the operation pair (minimisation,expectation) just the
expectation is to be respected.
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Design with a Short Horizon

The reduction of the design horizon� is the most direct way to a
simplified (suboptimal) design.

The reduction obtained by planning just one-step-ahead has been
popular for a long time [Pet70]. Dynamic decision making, however,
means that consequences of an action� are encountered far behind the
time moment of its application. Consequently, the action that is
optimal when judged from a short-sighted perspective might be quite
bad from the long-term viewpoint [KHB+85].

This observation has stimulated the search for a compromise between
the ideal planning over the whole horizon of interest and
short-sighted, locally optimising strategies.
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Receding Horizon (Model-Based Predictive Design)

A little-steps-ahead planning provides just an approximation of the
optimal design�. Thus, it is reasonable to apply just the initial
planned actions and redesign strategy whenever the knowledge about
the system and its state is enriched. This is the essence of
receding-horizon strategy

performs at time t the design looking T step ahead, with a small T
bridging the dynamic consequences of the action At ,
applies the first action At resulting from this design for the
accumulated knowledge Kt−1,
acquires the new data record� Dt = (At ,∆t) =(action�,observation�),
updates the knowledge Kt−1 →Dt =(At ,∆t ) Kt|t+1 and performs learning,
repeats the (design of the actions, application of the action, making
the observation, performing the learning step).

Mostly, a passive approximation of the models is used. In an extreme,
widely-spread variant, known as model-based predictive design
[Mos94, Pet84, CMT87, Cla94, CKBL00, STO00], it runs without the
learning but coping with non-linear systems and hard bounds.
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One-Step-Ahead Design Suffices with Known Value
Function

Dynamic programming, Proposition 11, and its FPD variant,
Proposition 20 can be interpreted as one-step-ahead design if the
value function� is known. This observation justifies approximate
dynamic programming [SBPW04] that estimates the value function.
Its FPD version with a finite dimensional information state� Xt has to
approximate γ(Xt) by γ(Φ,Xt) parameterised by a finite-dimensional
parameter Φ ∈ Φ?. It should to fulfil identities

γ(Φ,Xt−1) =

∫
A?t

If(At |Xt−1) exp[−ω(Φ,At ,Xt−1)] dAt (154)

ω(Φ,At ,Xt−1) = Ω(At ,Xt−1)−
∫

X?
t

f(Xt |At ,Xt−1) ln(γ(Φ,Xt)) dXt

Ω(At ,Xt−1) ≡
∫

X?
t

f(Xt |At ,Xt−1) ln

(
f(Xt |At ,Xt−1)
If(Xt |At ,Xt−1)

)
dXt

that can be conceptually solved by successive approximations while
evaluating integrals by a Monte Carlo method.
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Decomposition of DM

Splitting of the DM task in a chain of subtasks is obvious and widely
used way of converting optimal design to an approximation of the
practically optimal design�. The experience recommends

golden DM rule , which states that a departure from the optimality
should be the last option inspected.

Below, an example of such decomposition is listed. It concerns the
case of adaptive control with the learning part based on parameter
estimation. Each item in the list has been found as a relatively
self-containing decision sub-problem.

Lack of the formal tools for the decomposition leaves us with
empirical rules in this area. This makes us summarise here the
experience we have collected in this respect within a long-term project
DESIGNER [KNKP03, KH91, KH94, BKN+98].

The design, as any human activity, is iterative. Naturally, the majority
of iterations should be concentrated in the off-line phase in order to
minimise expenses related to the commission of the decision strategy�.
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Off-Line Phase of Adaptive-Control Design

The following indicative list of subtasks is solved, often with hidden
iterations, until the decision maker� is satisfied.

Formalise the addressed DM problem, i.e.

get the specification of technical control aims,
get the specification of the system,
get the specification of the available data, actions and observations,
get the specification of technologic and complexity restrictions,
collect the knowledge available.

Select class of parametric models.

Perform experimental design allowing to collect informative data, e.g.,
[Zar79].

Make data pre-processing, e.g. [OW83, KB02].

Quantify prior knowledge [KNKP03, KKNB01, KDW+80, KBG+11].

Estimate model structure and control period
[Lju87, KNKP03, KK88, IM96, K9́1, BR97].
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Off-Line Phase of Adaptive-Control Design (cont.)

Estimate forgetting factor, Section 28.

Perform generalised Bayesian estimation, Section 14, based on prior
knowledge and available data; the result will be used as the prior
and/or alternative pd in on-line phase, Section 28.

Validate the model, e.g. compare quality on learning and validation
data [Plu96]. The preferable solution based on Bayesian testing of
hypotheses [KNŠ05] exploits all learning data and suits to dynamic
systems.

Quantify preferences via the ideal pd� or performance index�, [KG10].
Do until the results cannot be improved

Select the type of the suboptimal control design and its parameters.
Perform prior design of the controller and predict the closed-loop
behaviour [KJO90, KH94, NBNT03].
Compare the results with decision maker’s preferences.

It is wise to store the data collected during the subsequent on-line
phase and use them for an improved off-line design.
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On-Line Phase of Adaptive-Control Design

The following DM subtasks are solved in real time, for t ∈ t?. Here, there
is almost no freedom for iterative trial-and-error solutions.

Collect and pre-process data.

Generate reference signals to be followed by controlled quantities
forming a part of the behaviour�.

Apply data-updating step and emulate time-updating step by
forgetting�.

Use the selected suboptimal design, e.g., receding horizon strategy�.

Generate action using the designed strategy� and pre-processed data.

Check and counteract possible discrepancies like violation of
constraints (by optimised cutting) or an extreme difference of
predicted and observed behaviour characteristic (by a re-tuning of
optional parameters of the design�).
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. . . Omitted Topics

Designs leading to linear programming [KvvPZ10].

Handling of constrained actions [Böh04].

General approach to learning of performance index [KG10].

. . .
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Basic Types of DM
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Aim

The additional discussion of DM elements�, “atoms” creating any
decision task, should help us to learn a good practice and to avoid
common mistakes.

The choice, modification and use DM elements� are specific decision
subtasks that have to be harmonised with the final aim� considered.
It is often very hard task but the golden DM rule� is to be respected
as much as possible.

The presentation describes the design� sequentially. The interrelations
of respective DM elements� imply that design steps are mostly
performed in parallel and in an iterative manner. For instance, the
specification of behaviour� cannot be separated from the DM aim.

The presented theory has typical versions that are over-viewed here,
too.
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Discussion Concerns the Bottom Part of DM Scenario

SYSTEM
World's part of interest: including sensors & actuators 

STRATEGY
mapping of non-decreasing knowledge on actions

external influences

observations actions

strategy's algorithm 

DESIGN
off/on-line transformation of knowledge, aims & constraints 

on strategy's algorithm

theory, algorithms, 
software, designer's 
knowledge, elicited user's 
knowledge & aims domain-specific user's 

aims, constraints & 
knowledgeDESIGNER

USER
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Behaviour

DM� tries to influence closed-loop behaviour� in harmony with user’s
preferential ordering�. For doing this, it has to delimit behaviour�
itself. It consists of a sequence up to optional horizon� h. Its tth
elements splits into

available optional action� A ∈ A?

accessible and potentially useful observation� ∆ ∈ ∆?

hidden quantity� X ∈ X ?.

The delimitation covers both choice of the quantity and its desired or
expected range.
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Actions

Availability of an optional action� is inevitable precondition of any
DM�.

The nature of DM often determines possible actions uniquely.
Sometimes, alternatives are available. Such incomplete
pre-determination calls for selecting the most suitable one.

The domain-specific properties (for instance, physical or economical)
and their knowledge drive the initial choice of actions. If non-unique
even then, the choice should be narrowed down via Bayesian structure
estimation�, Proposition 34.
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Observations

Observations connect the artificial design world with reality.

The causal decision rule� with more observations can be better than
other with a more narrow observation set. Thus, no observation
should be a priori discarded. Bayesian testing of hypotheses serves for
the recognition whether the informational contribution of an
observation entry is so small that the inevitable approximate
treatment considering it is worse than without it.
Observations splits in

indicators of decision quality determining preferential ordering�

auxiliary, information bringing, observations: the leave to the fate�

option is applied to them.

Realised actions should be a part of observations in order to cope
with implementation imprecisions. On the other hand,

external quantity , which is observation�s uninfluenced (even
indirectly) by action�, must not be taken as actions as such treatment
hides the need for their prediction� in dynamic DM�.
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Hidden Variables

Relations describing the system� of interests are modelled by exploiting
two complementary and coexisting ways:

first principles (conservation laws) that relates quantities with a clear
physical meaning, which are measured indirectly by imperfect sensors.
For instance, the kinematic state of a space shuttle is position, speed
and acceleration while the position is imprecisely measured.

“universal” approximation property [Hay94], i.e. the ability to
approximate well any relation within a considered model class if the
parameters of the approximating model are properly chosen.
For instance, any smooth pd� can be approximated by a finite mixture
of Gaussian pds when weights of respective Gaussian pds and their
initial two moments are appropriately chosen.

Both ways require domain knowledge and supply of universally
approximating classes. None of them provides the needed complete system
model and the completion has to be employed. Bayesian testing of
hypotheses then serves for removal superfluous quantities.
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Design Constraints

The design� has to provide causal decision rule�s. This constraint is
respected by the adopted design via dynamic programming,
Proposition 11. It relies on clear distinction between available
observation�s and hidden. It can be changed by judicious choice of
sensors.

Determination of ranges of measured and hidden quantities is an
integral part of

modelling that constructs observation model�, time evolution model�
and prior pd�.

knowledge elicitation is a modelling activity transforming knowledge
into the prior pd�.
In parameter estimation� careful specification of quantities’ ranges is
often neglected and it is respected by the prior pd. It exploits fact
that the posterior pd� has the support included in the support of the
prior pd, see Section 14.
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Constraints on Actions

Actions’ constraints are often called

technological constraints coincide with the final specification of the
decision set A?(|t?|). This term reflects that they follow mostly from
technological, economic or safety considerations.

Generally, non-trivial technological constraints increase complexity of
the design�. They are often relaxed for complexity reasons and
reflected in other DM elements�. Typically, the performance index� is
modified, i.e. a sort of penalty-based optimisation [HT96] is used.

The penalty-based coping with constraints is to be combined with a
good and justified optimisation practice:

a simple clipping at the boundary of A? should not be used if a
particular unrestricted decision is out of the target set A?: a proper
(near) optimal projection on A? is needed,
the applied (not the designed) action is to be included into knowledge.
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Remarks on Constraints

Unnecessary constraints should be avoided. For instance, the
restriction to unbiased estimator�s [Rao87a] is well justified in many
statistical decision tasks. The restriction to estimators of this type in
adaptive control [AW89] can make the final decision strategy� (much)
less efficient than possible.

Support of the options related to constraints (similarly as the other
options) indicate that a significant load is put on the designer.
Algorithmically feasible support is still poorly developed.
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Data Acquisition

Data connect the artificial world of evaluations with reality. Their
information content is crucial for the success of the decision making
(DM�) that use them. Ideally, their acquisition should be based on

experimental design that selects strategy� used during data
acquisition so that data are as informative as possible.

Theoretically, it means that the chosen working conditions should
suppress ambiguity of the best projections caused by quality of data,
see Proposition 18.
Practically, the optional data (system inputs, set points) have to
“excite” sufficiently the inspected system�.
For instance, we cannot learn the dependence of outputs on inputs
when inputs do not vary during the data acquisition.
Obviously, the excitation during the data acquisition influences also
speed of the filtering� or estimation�.

The exposition focuses on cases with unknown parameter�, i.e. time
invariant hidden quantity� Θ = Xt , t ∈ t?. It (almost) omits filtering�.
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On Posterior Pd

Under natural conditions of DM�, and time invariant parametric
model� f(∆|Θ,At ,Kt−1) = M(Ψt ,Θ) with a finite-dimensional data
vector� Ψ′t = [∆′t , ψ

′
t ] = [observations,regression vector] the posterior

pd can be expressed

f(Θ|Kt) ∝ f(Θ) exp

[
t

∫
Ψ?

1

t

t∑
τ=1

δ(Ψ−Ψτ ) ln(M(Ψ,Θ)) dΨ

]
. (155)

Under general conditions, the integral in (155) is bounded from above
for a fixed Θ and the posterior pd asymptotically concentrates on the
set containing minimisers Θ(Ψt) ∈ Θ? of its negative value

−
∫

Ψ?

1

t

t∑
τ=1

δ(Ψ−Ψτ ) ln(M(Ψ,Θ(Ψt))) dΨ (156)

≤ −
∫

Ψ?

1

t

t∑
τ=1

δ(Ψ−Ψτ ) ln(M(Ψ,Θ)) dΨ
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Bayesian Experimental Design

By taking expectation� of this inequality with respect to Ψt and Θ,
we get characterisation of Θ(Ψt) as lower bound on

−
∫

Ψ?,Θ?
f(Ψ,Θ) ln(M(Ψ,Θ)) dΨ dΘ (157)

=

∫
Ψ?,Θ?

f(Ψ,Θ) ln

(
f(Ψ)f(Θ)

f(Ψ,Θ)

)
dΨ dΘ︸ ︷︷ ︸

−I(Ψ,Θ)=−mutual information

−
∫

Ψ?
f(Ψ) ln(f(Ψ)) dΨ︸ ︷︷ ︸

entropy

Thus, it is desirable to minimise (157) over decision strategy� used
during data acquisition. As discussed with Proposition 22, entropy� of
data vectors has to be finite. If we fix it, the experimental design
minimising (157) has to maximise

mutual information between Ψ and Θ defined I(Ψ,Θ) =∫
Ψ?,Θ?

f(Ψ,Θ) ln

(
f(Ψ,Θ)

f(Ψ)f(Θ)

)
dΨ dΘ = D(f(Ψ,Θ)||f(Ψ)f(Θ)). (158)
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Comments on Experimental Design

The proposed optimisation is non-standard in this area but fits to the
overall philosophy of FPD�.

This experimental design� neither supposes existence of “true”
parameter nor the knowledge of the parameter Θ(Ψt) ∈ Θ? describing
the best projection� to the set of parametric models M(Ψ,Θ).

Under natural conditions of DM� the optimised mutual information�

depends linearly on the the optimised strategy� {f(At |Kt−1)}t∈t? .
The minimisation would led to infeasible actions without, the
constrained entropy�,

The constraint on entropy� can be introduced indirectly by limiting
the action range.
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Comments on Experimental Design (cont.)

The formulated optimisation is as complex as the general FPD� and
faces the same problems as discussed in Section 29. Here, a specific
simplification can be made by narrowing the set of competitive
strategies even to a finite collection used within classical and
well-established framework [OW83, Ogd97].

The mutual information can also be used for analysing data when
estimation� results are unsatisfactory.

Feasible solutions for specific classes of models and strategies are well
elaborated see, for instance, the classical reference [Zar79].
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Data Pre-Processing: the Need for It

pre-processing maps raw data on pre-processed data used in DM�.

Data pre-processing adds a dynamic mapping to the treated system�

so that its common use seems to be illogical and harmful. However, it
is fully meaningful due to the inevitable approximations in DM.

The objective pd� is (practically) always out of the set considered
parametric model�s. The estimation� searches for the best projection�

of the objective pd� that describes all relations of the considered
behaviour� reflected in measured data.

The projector has no information about significance of these relations
with respect to the solved DM task. Data pre-processing� should
suppress insignificant ones so that adverse influence of the additional
is counteracted by the improved modelling of the important relations.
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Typical Data Pre-Processing Includes:

data transformation linearises non-linear data relations implied by
their physical models or sensor properties. It enables use of
algorithmically well-supported linear parametric model�.

data scaling realises affine data transformation. It allow standardise
prior pds and decreases numerical demands.

outliers’ suppression removes or cuts outlying observations. It makes
the system model closer to normal pd, whose processing is
well-supported but which is non-robust in presence of outliers.

noise suppression removes data constituents, typically of a high
frequency, reflecting more sensor behaviour than the system dynamics.

missing data treatment substitutes missing data by their guess. It
counteracts lack of informative data and fills the gap in time
sequences reflecting the system dynamics.

re-sampling standardises sampling rate of the preprocessed data. It
exploits a high frequency of the data acquisition for noise suppression
and removes sampling-induced variations of modelled relations.
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Common Pre-Processing Mistakes

Pre-processing significantly influences quality of the resulting
projection of the objective pd� on the set of parametric models and
thus whole DM.

Damages made in the pre-processing� phase can hardly be removed in
later design phases. Typical errors in pre-processing� are:

a premature reduction of data leading to a loss of relevant informative,
wasting of information due to the too low-frequency sampling of
acquired data,
a significant change of the modelled dynamics by the pre-processing
block: for instance, introduction too high transportation delay,
a distortion of the inspected relations by inadequate substitutions for
missing data.
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On Pre-Processing Methodology

Problem 1 (How to Harmonise Pre-Processing with Ultimate Goal?)

Similarly as other sub-tasks, the optimal pre-processing requires solution of
the overall decision task to which it serves. It is mostly impossible. Even
splitting the overall task into adequate and harmonised subtasks is left to
a “sound” reasoning. It is pleasant as it requires creativity. It is unpleasant
as the final results of the decision making might be spoiled by an improper
choice. The problem is severe especially in dynamic design� in which there
is a restricted freedom for an iterative trial-and-error treatment.
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Construction of Parametric Model – Grey Box Modelling

The parametric model� relates behaviour�’s constituents and provides
predictive pd� exploited in data-driven design�. A substantial
domain-specific knowledge should be built into it. The ideally, it should be
based on

grey box modelling collects theoretically expected relations between
quantities in behaviour� and extend them into the probabilistic
parametric model�.
Parameters are unknown constants (almost always) present in the
final parametric model�.
The extension is to be done using minimum KLD principle�.
The resulting parametric model� is usually too complex for subsequent
treatment and is to approximated by a member of a feasible family,
typically, dynamic exponential family�. The approximation principle�

discussed in Section 20 serves to this purpose.
The dynamic exponential family� is a natural candidate as
approximating pd, which converts functional recursive estimation into
algebraic one , see Proposition 27.
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Black Box Modelling

The grey box� modelling can be either impossible due to the lack of
domain knowledge or can lead to unmanageable models. Then

black box modelling approximates the modelled functional relations
by expanding them into a suitable functional basis. The functional
basis is required to be dense within the class of modelled mappings.
Neural-nets community [Hay94] casted for it the appealing term

universal approximation property , which means the ability of a
function class (“basis”) to approximate arbitrarily well any modelled
function.
traditional applied to moments; general leads to mixture models

Traditionally, the expansion is applied to moments of the approximated pd.
Obviously, an expansion of the pd itself is more complete and systematic
and sometimes even simpler [JU04].
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Modelling by Finite Mixtures

This prominent black box� model is discussed in connection with modelling
of a data vector� Ψ′t = [∆′t , ψ

′
t ] =[observation�,regression vector�].

finite mixture is parametric pd of the form

f(Ψt |Θ) =
∑
c∈c?

αc f(Ψt |Θc), c? = {1, . . . , |c?|}, |c?| <∞, given by (159)

component , the pd f(Ψt |Θc), which is typically (not inevitably) a
member of exponential family�, and component parameter Θc

component weight αc , whose collection α = (αc )c∈c? has properties
of pd of an unobserved discrete-valued

pointer to the component Ct ∈ c?, f(Ct = c |Θ) = αc . Ct can be
interpreted as an hidden quantity� within the modelled part of the
behaviour�

(Ct ,Θ = (Θc , αc )c∈c? , observed quantities forming Ψt) (160)
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Universal Approximation Property of Finite Mixtures

Let pd f(Ψ) be ν measurable with compact Hausdorff domain
[Bou66]. Then, it can be approximated by a piece-wise function

f(Ψ) ≈
∞∑

c=1

f(Ψ̃c )volc
χc(Ψ)

volc
, (161)

where χi (Ψ) is a small neighbourhood of the grid point Ψ̃c with
volume volc =

∫
Ψ? χc(Ψ) dΨ. This is countable mixture of uniform

pdfs. Their non-negative weights f(Ψ̃c)volc have to fall to zero as∫
f(Ψ)Ψ?f(Ψ) dΨ =

∫
f(Ψ)Ψ?

χc (Ψ)
volc

dΨ = 1, c ∈ c?. Thus, f(Ψ) can
be approximated arbitrarily well by a finite mixture of uniform pds.

Indicators of the explored decomposition of unity [Vla79] can be
approximated by other, even infinitely smooth non-negative functions
having finite integral. They provide other basis for creating mixtures
and allow to relax compactness assumption. giwmixapproxte
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Finite Mixtures on Entire Behaviour: Independent Case

The mixture model (159) describes only a part of the behaviour.
Additional assumptions are needed to get its complete parametric
description. The wide-spread modelling deals with

classic mixture , which assumes data vectors Ψt independent when
conditioned on Θ (160), [TSM85]. The corresponding likelihood�

L(Θ,Kt) ≡
∏
τ≤t

f(Ψτ |Θ) =
∏
τ≤t

∑
c∈c?

αc f(Ψτ |Θc ) (162)

is the sum of 2t different functions of Θ.
Formula (162) demonstrates extreme complexity of the exact
Bayesian estimation�. The induced estimation� complexity is faced by
several ways commented below.
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Finite Mixtures on Entire Behaviour: Dependent Case

The finite mixture� (159) generally induces the parametric model�

f(∆t |Θ, ψt) ≡ M(Ψ,Θ) =

∑
c∈c? αc f(Ψt |Θc)∑

c∈c? αc

∫
∆?

t

f(Ψt |Θc ) d∆t︸ ︷︷ ︸
f(ψt |Θc )

(163)

=
∑
c∈c?

βc (Θ, ψt)
f(Ψt |Θc )

f(ψt |Θc )︸ ︷︷ ︸
f(∆t |Θc ,ψt )

=
∑
c∈c?

βc(Θ, ψt)f(∆t |Θc , ψt),

βc (Θ, ψt) = αc
f(ψt |Θc )∑

c∈c? f(ψt |Θc )
,Ψt =

data vector︷ ︸︸ ︷
[∆′t , ψ′t︸︷︷︸

regression vector

]

i.e. the finite mixture� has universal approximation property even in the
dependent case if the components weights βc(Θ, ψt) are allowed to
depend on the regression vector� ψt . In fact the model (163) is ratio of
coupled finite mixtures.
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Complexity and Established Ways of Coping with It

The exact estimation and prediction with the mixture model� is practically
impossible even in independent case as the number of terms in the
likelihood� L(Θ,Kt) (162) increases exponentially. Good approximations
exist if component�s belong to exponential family�.
The available techniques clusters into the following groups, which are also
used for other dependence models.

Search for point estimates maximising likelihood�, typically, via
expectation-maximisation algorithm [DLR77],

Approximation of the intractable prior pd� by the product of
approximate prior conjugate pd�s to respective component�s and by
heuristic (quasi-Bayesian) [TSM85, KKS98, KBG+06] or KLD�-based
projection (85) [And05] of the posterior pd into the product class.

Formulation of the learning problem as filtering�, which explicitly
estimates realisation of the pointer to the component� Ct .
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Prior Pd

The need for selecting prior pd is often regarded as the main
disadvantage of the adopted Bayesian approach. The lack of efficient,
unambiguous and elicitation-expert independent [GKO05], tools for
knowledge elicitation� can be blamed for it.

Here, we contribute positively to the never-ending discussion on pros
and cons of exploiting prior pds by indicating that the prior “expert”
information can be introduced into learning in a systematic way.

The posterior pd� (54) is a product of the likelihood� consisting of t
factors coinciding with parametric models f(∆τ |Θ,Aτ ,Kτ−1) and of a
single prior pd� f(Θ). If t is high enough and data bring a sufficient
information on Θ then the posterior pds obtained for various prior pds
resemble each other: the role of prior pd is weak [DeG70].

The posterior pd� is significantly influenced by the prior pd when
some of the above conditions is not fulfilled.
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Qualitative Role of Prior Pd

Proposition 30 (Role of the Prior Pd)

Parameter values Θ /∈ supp [ f(Θ)], for which the prior pd is zero, get
the zero posterior pd, too. Formally,

supp [ f(Θ|Kt)] = supp [ L(Θ,Kt)] ∩ supp [ f(Θ)] .

The recursive evolution of the likelihood�

L(Θ,Kt) ≡
∏
τ≤t

f(∆τ |Θ,Aτ ,Kτ−1) = f(∆t |Θ,At ,Kt−1)L(Θ,Kt−1)

t ∈ t?, L(Θ,K0) = 1,Θ ∈ X ?
L (164)

does not depend on the prior pd chosen.

The posterior pd exists iff the product L(Θ,Kt)f(Θ) is integrable.

Proof It is a direct consequence of the formula for posterior pd� (54). �
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Remarks on the Role of Prior Pd

Remark 18

The prior pd offers a simple and clear way for introducing hard
restrictions on parameters.

The recursion (164) is valid even if Θ∗L 6= Θ? ≡ supp [ f(Θ)]. This
implies that hard bounds on parameter values must not influence
likelihood�. This is repeatedly overlooked in recursive estimation.
Instead of restricting the posterior pd�, the likelihood statistics are
deformed with an adverse effect on the estimation quality.

Often, a flat prior pd models the lack of prior knowledge. Even
integrability of the prior pd is relaxed and the

improper prior pd f(·) ≥ 0,
∫

f(Θ) dΘ =∞ are used. For instance,
the posterior pd is proportional to the likelihood if we allow the prior
pd be improper and equal 1. Then, the posterior pd� might be
improper, too, i.e. a flat but proper prior pd regularises estimation.
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Babel Tower Problem

Automatic mapping of many different forms of processed knowledge calls
for a common language for expressing the knowledge irrespectively of the
form of the parametric model�. It is provided by

fictitious data is a possible outcome gedanken experiment on the
modelled system. The following examples indicate suitability of this
knowledge expression but its universality is only conjectured.

obsolete data covering data measured on a similar or simulated
system or expected data ranges motivated physically.
Experimentally motivated characteristics like:

static gain is (approximately) constant steady-state output value
observed after applying unit step on input.

step response is time response of the output on the unit input step.

frequency characteristic at frequency ω is an expected form of the
output a(ω) sin(tω + φ(ω)) after applying the input sin(ωt) (a(ω) is
called amplitude and φ(ω) phase).

cut off frequency is frequency ωc after which a(ω) ≈ 0.
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Coping with Imprecise Estimation

The estimation with fictitious data in the role of observations provides an
approximate posterior pd as the fictitious data does not come from the
modelled system in its present form. It leads to the analogous situation as
in forgetting, Section 28, where the approximate nature of the estimation
originated in parameter changes. This motivates the same formulation.

Proposition 31 (Coping with Imprecise Estimation)

Let f be an unknown pd, f0 its prior guess complemented by the
knowledge D(f||̂f) ≤ β, i.e. a given f̂ approximates f, cf. (85), with the
precision not exceeding a given β > 0. Then, the minimum entropy
principle� recommends to use

f ∝ f̂λf1−λ
0 , where λ =

{
1 if D(f0||̂f) < β
∈ (0, 1) otherwise

(165)

Proof The Lagrangian D(f||f0) + ΛD(f||̂f) with Kuhn-Tucker multiplier
Λ ≥ 0 is just rearranged into KLD� of f on the claimed solution with active
and non-active constraint. Then, Proposition 17, is used. �
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Fictitious Time, Pre-Prior and Pre-Posterior Pds

Sequences of fictitious data are sought to be realised before
processing real data, the timed quantity� labelled by discrete time
t ∈ t?. To distinguish them, we use

fictitious time , k ∈ {1, 2, . . . |k?|}, |k?| <∞, labels individual items
of sequences fictitious data�.

Bayesian estimation� is applied to fictitious data (with some
modifications discussed further on). It starts from

pre-prior pd , which is (usually flat) pd f̄ delimiting expected range
Θ? of unknown parameter� Θ and leads to

pre-posterior pd , which is the posterior pd obtained by (modified)
Bayesian estimation� applied to pre-prior pd and fictitious data. It
becomes prior pd� after processing all fictitious data.
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Estimation with Fictitious Data I

The fictitious data update the pd f(Θ|K0) = f0(Θ) into the pre-posterior
pd�

f̂(Θ) = F̂(Θ|Kk ) ∝ f(∆k |Θ,Ak ,Kk−1)f(Θ|Kk−1). (166)

Essence of the fictitious data� implies that the f̂(Θ) approximates the
unknown correct pd f(Θ|Kk ) = f(Θ), which would express properly the
processed knowledge piece. The used simplified identifiers connect the
respective pds with those in Proposition 31, which recommends to take
the following pd as the correct one

f(Θ|Kk ) ∝ fλk (∆k |Θ,Ak ,Kk−1)f(Θ|Kk−1), λk ∈ (0, 1], i.e. (167)

Fictitious data in Bayes rule� is to enter the “flattened” parametric model.

It means that adequate processing of the fictitious data� uses

weighted Bayes rule , which processes (fictitious) data by (167).

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 276 / 393



Estimation with Fictitious Data II

A data vector� Ψk determines a used parametric model� f(∆k |Θ,Ak ,Kk ) =

M(Ψk ,Θ), Ψ′k = [∆k , ψ
′
k ] = fictitious [observation, regression vector]. (168)

The weighted Bayes rule� (167), applied to pre-prior pd� f̄(Θ), gives

f(Θ|K|k?|) ∝ f̄(Θ) exp

wκ

|k?|∑
k=1

αk ln(M(Ψk ,Θ))

 (169)

= f̄(Θ) exp

[
w|k?|

∫
Ψ?

f|k?|(Ψ) ln(M(Ψ,Θ)) dΨ

]
, where

w|k?| =

|k?|∑
k=1

λk ∈ (0, |k?|], αk =
λk

w|k?|
∈ (0, 1] ⇒

|k?|∑
k=1

αk = 1

f|k?|(Ψ) =

|k?|∑
k=1

αkδ(Ψ−Ψk ),

where δ denotes Dirac delta� and f|k?|(Ψ) can be interpreted as a weighted
version of the sample pd on the (fictitious) data vector� Ψ, cf. (155).
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Grouping of Fictitious Data

The quality of knowledge elicitation, formally performed by the
weighted Bayes rule�, depends strongly on the chosen weights λk that
are determined by the chosen precisions βk (165).

The numbers of fictitious data� expressing knowledge pieces having
different sources (different obsolete data, different, physical aspects,
different experts’ opinion) may differ substantially.
These observations motivate to group fictitious data by defining

homogenous knowledge piece , indexed by
κ ∈ κ? = {1, 2, . . . , |κ?|}, |κ?| <∞, which is expressed by fictitious
data Ψk , k ∈ k?κ ⊂ k? with a common weight λk = λκ in (169).

Note that the number of fictitious data |k?| can be very large (even
infinite) as the fictitious data� can result from analytically performed
gedanken experiment or may result from an extensive simulations. The
number of homogenous knowledge pieces |κ?| is always finite.
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Knowledge Elicitation with Homogenous Knowledge Pieces

Considering all homogenous knowledge pieces, the pre-posterior pd�

(169) becomes the prior pd� of the form

f(Θ) ∝ f̄(Θ) exp

[∑
κ∈κ?

νκ

∫
Ψ?

fκ(Ψ) ln(M(Ψ,Θ)) dΨ

]
νκ ∈ (0,∞) and fκ(Ψ) is pd on Ψ?. (170)

The pd fκ(Ψ) is formally fκ(Ψ) = 1
|kκ?|

∑
k∈k?κ

δ(Ψ−Ψk ). Its weight

νκ = |kκ?|λκ ≤ |kκ?| as λk ∈ (0, 1], see (167). The number |kκ?| can
be infinite. The limited knowledge precision implies νκ <∞.

The formula (170) was proposed and discussed in [KAB+06].
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Compact Form of Knowledge Elicitation

The choice of the pre-prior pd� in the form mimic to a knowledge
pieces

f̄(Θ) ∝ exp

[
ν̄

∫
Ψ?

f̄(Ψ) ln(M(Ψ,Θ)) dΨ

]
, (171)

given by ν̄ ≥ 0 and a pd f̄(Ψ), leads to the compact form of the prior
pd�

f(Θ) ∝ exp

[
ν0

∫
Ψ?

f0(Ψ) ln(M(Ψ,Θ)) dΨ

]
(172)

ν0 = ν̄ +
∑
κ∈κ?

νκ ∈ (0,∞) and f0(Ψ) =
ν̄ f̄(Ψ) +

∑
κ∈κ? νκfκ(Ψ)

ν̄ +
∑

κ∈κ? νκ
,

i.e. the pd f0(Ψ) is obtained by merging (100) (with appropriate
change of notation) of pds representing respective knowledge pieces.
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Knowledge Elicitation in Exponential Family

For dynamic exponential family� f(Θ) becomes conjugate prior� (118)

f(Θ) ∝ f̄(Θ)Aν0(Θ) exp 〈V0,C(Θ)〉 (173)

ν0 = ν̄ +
∑
κ∈κ?

νκ, V0 = ν̄V̄ +
∑
κ∈κ?

νκVκ

Vκ =

∫
Ψ?

B(Ψ)fκ(Ψ) dΨ, κ ∈ κ?,

and κth homogenous knowledge piece describes expectation of B(Ψ),
i.e. it gets the form of generalised moments of Ψ.

Practical examples of transformation knowledge pieces in fictitious
data are in [KN00, KBG+11].
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The Choice of Homogenous Groups and Their Weights

Homogenous groups are mostly implied by meaning of the processed
knowledge. Their specification does not seem problematic.

The weights νκ can be chosen subjectively to reflect reliability of the
knowledge source. This is, however, dangerous as

reliability and its guess have high volatility,
knowledge pieces can be mutually dependent, even repeated.

Thus, it is desirable to choose the weights more objectively.
Practically, it can be done if some observed data reflecting the current
state of the modelled system are available for the choice of weights.
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Dependence of Predictive Pd on Weights

For a given data d t , and any non-negative weights ν|κ
?|, the

predictive pd� has the value, see (57),

f(d t |ν|κ?|) =
J(νt , ft)

J(ν0, f0)
, where (174)

J(ν, f) is normalisation factor (57)

given by the parametric model� M(Ψ,Θ) (155) with arguments

ν0 = ν̄ +
∑
κ∈κ?

νκ, see (172), νt = ν0 + t

f0 = f0(Ψ) =
ν̄

ν0
f̄ (Ψ) +

∑
κ∈κ?

νκ
ν0

fκ(Ψ), see (172),

ft = ft(Ψ) =
ν0

νt
f0(Ψ) +

t

νt

1

t

t∑
τ=1

δ(Ψ−Ψτ ).

Data vectors Ψτ are made of the observed data d t , δ is Dirac delta�.
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Data-Based Choice of Weights

The choice of ν is our (designer�s’) action�, which should make the
predictive pd� good approximation of the available sample pd. The
recommended minimisation of KLD� (85) reduces to maximisation of the
predictive pd (174) with respect to ν|κ

?| with entries bounded by H <∞.

Inspection of the normalisation factor J (57), given by the parametric
model� M(Ψ,Θ) (155) helps in judging complexity of this problem. It
holds

J(ν, f) =

∫
Θ?

exp

[
ν

∫
Ψ?

f(Ψ) ln(M(Ψ,Θ)) dΨ

]
dΘ (175)

Non-trivial pre-prior pd� makes both J(ντ , fτ ), τ ∈ {0, t} finite for any
ν|κ

?| ∈ [0,H]|κ
?|, H <∞.

ν|κ
?| enters exponent in (175) linearly and thus J is continuous

convex function of ν|κ
?|.
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Data-Based Choice of Weights (cont.) & Open Problems

The predictive pd� (174) is the ratio of continuous, convex positive
functions of ν|κ

?| and reaches its maximum on |κ?| <∞ dimensional
compact. Thus, the maximisation of the predictive pd has nontrivial
solution achievable by standard algorithms, for instance, [Ben06].

The choice of the upper bound H does not seem critical. The
admission of zero weights is important as it allows to suppress
repetitively presented prior knowledge contradicting with observations.

Problem 2 (Problems Related to the Elicitation)

Does exist a significant class of prior knowledge that cannot be
expressed via fictitious data?

Applicability of the same methodology to filtering is conjectured but
untried.

Applicability to preference elicitation is conjectured but untried.
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Preference Description

The discussion focuses on the ideal pd�
If(B) as a descriptor of

preferential ordering� within FPD�. It is general enough as any
Bayesian DM with strategy-independent performance index� (19)
I(B) = IS(B) can be converted into the ideal pd using Proposition 23

If(B) =
M(B) exp [−I(B)/λ]∫

B? M(B) exp [−I(B)/λ] dB
, λ > 0, λ ≈ 0, (176)

where M(B) is system model� recognised in factorisation (50) of the
closed loop model� fS(B) = M(B)S(B).

A preferential quantity�
IX , a hidden quantity� introduced in order to

get complete ordering� of behaviours B?, splits the hidden quantity� X

X = ( MX , IX ), (177)

where MX enters explicitly system model� M(B) and generally the
ideal pd If(B) while IX enter the ideal pd If(B) only.
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The Choice of the Set of Ideal Pds

The rational choice of the set of possible ideal pds If
?

is to respect that

the ideal pd�≡ If ≡ f IS = closed loop model� with the optimal
strategy IS minimising expected performance index I.

the ideal pd in the standard Bayesian design� is the system model�
multiplied by the factor exp[−I(B)/λ] (176) that can be interpreted
as an indicator of the set of desired behaviours B? ⊂ B?.

Altogether, the ideal pd� should resemble system model� restricted to B?.
This induces rules like:

Popular quadratic performance index�, which corresponds to normal
closed loop model�, should be used when (approximate) normality is
reachable: it does not suit to systems described by heavy-tailed pds.

Support of the ideal pd is to be the desirable B?, e.g., admission of
large actions’ variances can make the optimal strategy useless.

The decision horizon� in approximate design� like receding-horizon
strategy� has to respect closed-loop dynamics as a chaining of short
horizon optimisation may lead to poor performance [KHB+85].
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Algorithmic Preference Elicitation

TO BE COMPLETED, SEE ATLANTA, WINDSURFER, SIERRA
NEVADA
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Static Tasks Differ in Generality

The static design�

selects and uses a single decision rule�

does not check dynamic consequences of the action� taken.

Categories of static design are distinguished according to content of
ignorance�.

The presented classical examples indicate how to formalise DM tasks.
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General Static Design

Setting the action time t = 1, the static design needs the DM elements�:

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�)
=((hidden,unmade observations),action,knowledge)
= ((X = X1,X0),∆ = ∆1),A = A1,KA = K0)

admissible decision rule�s meeting (45) S(A|X0,K0) = S(A|K0)

observation model� f(∆|X ,A,K0) & its ideal If(∆|X ,A,K0)

time evolution model� f(X |X0,A,K0) & its ideal If(X |X0,A,K0)

prior pd� f(X0|K0)f(K0) & its ideal If(X0,K0)

ideal decision rule�
IS(A|X0,K0).

Notice: unchecked ignorance is influenced by the action made!
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One-Step-Ahead Prediction

Example 12 (One-Step-Ahead Prediction)

aim� to construct prediction ∆̂ ∈ ∆? of unmade observation�

∆ = ∆1 ∈ ∆? modelled by observation model�
f(∆|X1,K) = f(∆|X1, ∆̂,K) (178)

and time evolution model�

f(X1|X0,K) = f(X1|X0, ∆̂,K) (179)
system� modelled World part

action� ∆̂ ∈ ∆?

knowledge� K entering both models and prior pd f(X0|K)

ignorance� hidden X1,X0 and observation� ∆

uncertainty� anything preventing to determine fully X1,X0,∆ from K
constraint� ∆?, computational complexity

dynamics� none (single decision rule� is required)
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One-Step-Ahead Prediction: DM Elements

DM elements� relevant to the one-step-ahead prediction are

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�)
=((unmade observations,hidden),prediction,knowledge)
= ((∆ = ∆1,X1,X0), ∆̂,K∆̂ = K)

admissible decision rule�s meeting (45) S(∆̂|X1,X0,K) = S(∆̂|K)

observation model� f(∆|X1, ∆̂,K) = f(∆|X1,K)

time evolution model� f(X1|X0, ∆̂,K) = f(X1|X0,K)

prior pd� f(X0|K)f(K)

the ideal pd

If(∆, ∆̂,X1,X0,K) = If(X1,X0|∆, ∆̂,K) If(∆|∆̂,K) IS(∆̂|K) If(K) (180)
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One-Step-Ahead Prediction: the Choice of Ideal Pd

The chosen factorisation makes options of factors in ideal pd “natural”

If(X1,X0|∆, ∆̂,K) = f(X1,X0|∆ = ∆̂,K) (181)

⇔ knowledge in ∆̂,K ideally coincides with knowledge in ∆, ∆̂,K
If(∆|∆̂,K) If(K) = If(∆|K) If(K)

⇔ prediction cannot influence observation and knowledge
IS(∆̂|∆,K) = S(∆̂|K)

⇔ the decision rule is left to the fate�: no general requirements apply.
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Optimal Predictor in FPD Sense

Proposition 32 (Optimal Prediction)

Under (45), (178), (179) and (181), the optimal predictor is deterministic
generating the optimal prediction

O∆̂ ∈ Arg min
∆̂∈∆?

∫
X?

1 ,X
?
0

f(X1,X0|K) ln

(
f(X1,X0|K)

f(X1,X0|∆̂,K)

)
dX1 dX0 (182)

= Arg min
∆̂∈∆?

∫
X?

1 ,X
?
0

f(X1,X0|K) ln

(
f(∆̂|K)

f(∆ = ∆̂|X1,K)

)
dX1 dX0

f(X1,X0|K) ∝ f(X1|X0,K)f(X0|K)f(K)

f(X1,X0|∆̂,K) ∝ f(∆ = ∆̂|X1,K)f(X1,X0|K)

f(∆̂|K) =

∫
X?

1 ,X
?
0

f(X1,X0|K)f(∆ = ∆̂|X1,K) dX1 dX0.

Proof By a direct use of basic relations between pds. �
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Remarks on One-Step-Ahead Prediction

The result can be interpreted as approximation of predictive pd� by
the observation model�.

The standard Bayesian prediction, determined by performance index
I(∆, ∆̂,K), can be formally cast into the FPD by defining the ideal
pd If(∆,X1,X0, ∆̂,K) ∝ f(∆|X1,K)f(X1|X0,K) exp[−I(∆, ∆̂,K)/λ],
λ > 0, λ ≈ 0, cf. (81).

The significant role of the system model� in (186), whose output is
predicted, is unusual and highly plausible. Standard Bayesian DM
selects performance index� I(∆, ∆̂,K) unrelated to the parametric
model, often, as squared norm of the difference ∆− ∆̂. This is a
good choice for system models close to linear-Gaussian ones. It can
be rather bad choice for heavy-tailed models.

Other actions, like system inputs, may influence the prediction
knowledge. Then, K∆̂ ≡ (KU ,U) and inputs influence both value of
the observation and its prediction.
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Static Design with Unknown Parameter

The static design with time invariant hidden X = X0 = Θ needs only

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�)
=((parameter,unmade observations),action,knowledge)
= ((Θ,∆ = ∆1),A = A1,KA = K0 = K)

admissible decision rule�s meeting (45) S(A|Θ,K) = S(A|K)

parametric model� f(∆|Θ,A,K) & its ideal If(∆|Θ,A,K)

prior pd� f(Θ|K)f(K) & its ideal If(Θ|K) If(K)

ideal decision rule�
IS(A|Θ,K).

The general FPD�, Proposition 25, provides the optimal decision rule�

OS(A|K) ∝ IS(A|K) exp[−ω(A,K)] (183)

ln( IS(A|K)) =

∫
Θ?

ln( IS(A|Θ,K)) If(Θ|K) dΘ, ω(A,K)

=

∫
Θ?

f(Θ|K)

∫
∆?

f(∆|Θ,A,K) ln

(
f(∆|Θ,A,K)
If(∆|Θ,A,K)

)
d∆ dΘ
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Estimation of Unknown Parameter

Example 13 (Point Estimation)

aim� to estimate unknown parameter� Θ ∈ Θ? entering
parametric model� uninfluenced by the estimate chosen

f(∆|Θ,K) = f(∆|Θ, Θ̂,K) (184)

system� modelled World part

action� Θ̂ ∈ Θ? ⊂ Θ?

knowledge� K entering parametric model� and prior pd f(Θ|K)

ignorance� estimated parameter Θ and observation� ∆

uncertainty� anything preventing to determine fully Θ from K
constraint� Θ?, computational complexity

dynamics� none
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Point Estimation as Static Design with Unknown Θ

DM elements� relevant to the point estimation are

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�)
=((unmade observations,parameter),estimate,knowledge)
= ((∆ = ∆1,Θ), Θ̂,KΘ̂ = K)

admissible decision rule�s meeting (45) S(Θ̂|Θ,K) = S(Θ̂|K)
parametric model� f(∆|Θ, Θ̂,K) = f(∆|Θ,K) & its ideal
If(∆|Θ, Θ̂,K)
prior pd� f(Θ|K)f(K) & its ideal If(Θ|K) If(K)
ideal decision rule�

IS(Θ̂|Θ,K).

The following options of red elements to be specified seem to be “natural”

If(Θ|K) = f(Θ|K)⇔ DM preserves the relation of Θ & K
If(∆|Θ, Θ̂,K) = f(∆|Θ̂,K)⇔ ideally the estimate relates observation

to knowledge exactly as the (unknown) parameter
IS(Θ̂|Θ,K) = S(Θ̂|K)⇔ leave to the fate� option expresses lack of

wishes on the designed decision rule�. (185)
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Optimal Point Estimator in FPD Sense

Proposition 33 (Optimal Point Estimator)

The static FPD� determined by options (185) provides the deterministic
point estimator generating the optimal estimate as minimiser of the KLD�

of the predictive pd� f(∆|K) =
∫

Θ? f(∆|Θ,K) on parametric model� with

the estimate Θ̂ “plug-in” instead of the unknown parameter Θ

OΘ̂ ∈ Arg min
Θ̂∈Θ?

D(f(∆|K)||f(∆|Θ̂,K)). (186)

Proof Due to the leave to the fate option, the optimised KLD is linear
in the optimised decision rule. Direct evaluations respecting (184), natural
conditions of DM� (45) and with DM elements (185) show that

D(fS(B)|| If) =
∫

Θ̂?=Θ?
S(Θ̂|K)

∫
∆? f(∆|K) ln

(
1

f(∆|Θ̂,K)

)
d∆ dΘ̂+ term

independent of S(Θ̂|K). Thus, the optimal rule is to concentrate on
minimiser of the Kerridge inaccuracy, which coincides with minimiser of
the KLD. �
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Remarks on Point Estimation

The result can be interpreted as approximation of predictive pd� by
the predictor obtained by plug-in point estimate Θ̂ into the
parametric model�, cf. (85).

Recall that the standard Bayesian estimation, determined by
performance index I(Θ, Θ̂,K), can be formally cast into the FPD by
defining the ideal pd If(∆,Θ, Θ̂,K) ∝ f(∆|Θ,K) exp[−I(Θ, Θ̂,K)/λ],
λ > 0, λ ≈ 0, cf. (81).

The significant role of the parametric model� in (186), whose
parameter is estimated, is unusual and highly plausible. Standard
Bayesian DM selects performance index� I(Θ, Θ̂,K) unrelated to the
parametric model, often, as squared norm of the difference Θ− Θ̂.
This is good choice for parametric models close to linear-Gaussian
ones. It can be rather bad choice for non-symmetric and/or
heavy-tailed models.
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Testing of Hypotheses

Example 14 (Testing of Hypotheses)

aim� to estimate the pointer ϑ ∈ ϑ? ≡ {1, . . . , |ϑ?|}, |ϑ?| <∞
to the hypothesis Hθ about system model�

f(∆|Hϑ,K) = f(∆|Hϑ, ϑ̂,K) (187)
by ϑ̂ ∈ ϑ? ⊂ ϑ?

system� modelled World part

action� ϑ̂ ∈ ϑ? ⊂ ϑ?

knowledge� K entering the system model� and prior pd f(ϑ|K)

ignorance� estimated parameter ϑ and observation� ∆

uncertainty� anything preventing to determine fully ϑ from K
constraint� ϑ?, computational complexity implied by the excessive |ϑ?|
dynamics� none
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Hypotheses Testing as Static Design with Unknown ϑ

DM elements� relevant to the point estimation are

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�)
=((unmade observations,pointer to the most plausible
hypothesis),pointer estimate,knowledge) = ((∆ = ∆1, ϑ), ϑ̂,Kϑ̂ = K)

admissible decision rule�s meeting (45) S(ϑ̂|ϑ,K) = S(ϑ̂|K)

system model� f(∆|Hϑ, ϑ̂,K) = f(∆|Hϑ,K) & its ideal If(∆|Hϑ, ϑ̂,K)

prior pd� f(ϑ|K)f(K) & its ideal If(ϑ|K) If(K)

ideal decision rule�
IS(ϑ̂|ϑ,K).

Observe: hypotheses testing coincides with parameter estimation with
discrete-valued parameter ϑ↔ Θ. Thus, we can focus on specificity of
hypotheses testing.
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Remarks on Hypotheses Testing I

The system model� f(∆|Hϑ,K) is model parameterised by ϑ ∈ ϑ?.

Unlike in classical hypotheses testing [Rao87a], the testing is
performed within a completely specified set of alternatives.

The hypotheses testing is usually performed with the knowledge
(gradually) extended by by data, say d t . Bayesian estimation,
Proposition 15, provides the key posterior pd f(ϑ|d t ,K). Discrete
nature of ϑ implies that this pd quickly concentrates on a small
subset of ϑ? containing often single point, see Proposition 18. Thus,
with any reasonable ideal pd, single hypothesis within ϑ? is accepted
as the most plausible one even when none of them is correct.

The needed pds {f(∆|Hϑ,K)}ϑ∈ϑ? are rarely obtained directly.
Instead, they are predictive pds obtained through filtering or
parameter estimation and prediction, Propositions 14, 18. Influence of
prior pds within these “auxiliary” tasks on values of f(ϑ|d t ,K) is
quite significant.
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Remarks on Hypotheses Testing II

Other actions, like control, are usually present and usually meet
natural conditions of DM� (45). Then the decision rules generating
them cancel in the formula for f(ϑ|d t ,K).

The testing of hypotheses is extremely powerful technique in spite of
its formal simplicity. It is especially true when dealing with the
predictive pd�s evaluated for each hypothesis by filtering or
estimation. Non-Bayesian treatment of such compound hypotheses,
[Rao87a], is far from being trivial. The Bayesian solution brought a
whole set of novel and efficient solutions of so called

structure estimation , which selects among alternative parametric
models differing in functional form, order of regression vector� or
selection of significant variables to be used in the system model�,
[K8́3, KK88, Ber98].
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Structure Estimation

Proposition 34 (Structure Estimation)

Let parametric model�s {f(∆t |Θϑ,At ,Kt−1, ϑ)}ϑ∈ϑ?;t∈t? be candidates for
describing of a system. Let the respective unknown parameter Θϑ be
described by a prior pd� f(Θϑ|ϑ,K0) and prior pd� f(ϑ|K0) be prior
probabilities of hypotheses. Let the possible additional action�s At (like
system inputs) meet natural conditions of DM�. Then, posterior pd on
hypotheses, needed for hypotheses testing, are

f(ϑ|Kt) ∝ Jϑ(Kt)

Jϑ(Kt−1)
f(ϑ|Kt−1) (188)

Jϑ(Kt) =

∫
Θ?ϑ

t∏
τ=1

f(∆τ |Θϑ,Aτ ,Kτ−1)f(Θϑ|K0) dΘϑ.

Proof It uses basic algebra with pds and represents a version of
Proposition 15, respecting natural conditions of DM� adopted for all
involved decisions. �
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Remarks on Structure Estimation

Structure estimation can be formulated and solved in conjunction
with filtering.

The knowledge can generally depend on the structure of the model
within which it is used.

Mechanical ways of generating list of hypotheses make |ϑ?| extremely
large and consequently the their testing infeasible.

Hypotheses are usually created gradually. It opens a question, how to
extend the existing set of hypotheses and how to exploit former data
so that the new hypothesis is compared in a fair way. A lot of partial
steps have been done in this respect but a systematic design and
analysis are missing.
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Static Design with No Hidden Quantity

The static design without hidden quantities needs only

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�) =(unmade
observations,action,knowledge) = (∆ = ∆1,A = A1,KA = K0 = K)

admissible decision rule�s f(A|K) = f(A|K)

system model� f(∆|A,K) & its ideal If(∆|A,K)

ideal decision rule�
If(A|K).

The general FPD�, Proposition 25, provides the optimal decision rule�

Of(A|K) ∝ If(A|K) exp[−ω(A,K)] (189)

ω(A,K) =

∫
∆?

f(∆|A,K) ln

(
f(∆|A,K)
If(∆|A,K)

)
d∆.
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One-Step-Ahead Control

Example 15 (One-Step-Ahead Control)

aim� to select system input U ∈ U? entering system
modelled by f(∆|u,K) so that
the observation ∆ is close to a set point s∆ ∈ ∆?

system� modelled World part to be influenced

action� u ∈ u?

knowledge� K entering system model� and prior pd together with set point

ignorance� the unmade observation� ∆

uncertainty� anything preventing to determine fully ∆ from u and K
constraint� u?, computational complexity

dynamics� none
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One-Step-Ahead Control as Static Design

DM elements� relevant to one-step-ahead control are

behaviour� B=(GA,A,KA)=(ignorance�,action�,knowledge�) =(unmade
observations,parameter,input,knowledge) = (∆, u,Ku? = K)

admissible decision rule�s (control laws) S(u|K)

system model� f(∆|u,K) & its ideal If(∆|u,K)

prior pd� f(K) & its ideal If(K)

ideal decision rule�
IS(u|K).

The following options of red elements to be specified seem to be “natural”

If(K) = f(K)⇔ input U has no influence on knowledge K
If(∆|U,K) = f(∆| sU,K) with f( s∆| sU,K) ≥ f(∆|U,K) on (∆?,U?)
IS(U|K) a pdf with support in U?.

The solution (189) is directly applicable with correspondence U = A.
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Remarks on One-Step-Ahead Control

The input U influences directly the system� and thus observation�.

The standard one-step-ahead control, determined by performance
index I(∆,U,K), casts into the FPD by using the ideal pd
If(∆,U,K) ∝ f(∆|U,K) exp[−I(∆,U,K)/λ], λ > 0, λ ≈ 0, cf. (81).

Due to uncertainty� no input (including sU whose existence is
assumed) can enforce ∆ to coincide with the set point s∆: the
corresponding ideal (called the most optimistic one [?]) is
non-degenerated pd�. It “penalises” the deviations ∆ and s∆ in
harmony with the system model respecting the character of
uncertainty. The popular quadratic performance indices [AM89] are
obtained for Gaussian system models. If the system model is far from
Gaussian case, their use is doubtful.

The danger of solving dynamic control via chaining of one-step-ahead
control can hardly be over-stressed [KHB+85]. Thus, it should be
considered in really static cases or in suboptimal strategies.
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The following tasks focus on DM problems in which their dynamic
character plays a substantial role.
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Sequential Estimation

sequential estimation decides, whether to process a new observations
or whether to stop; when stopping it provides a final estimate of an
unknown parameter.

Sequential estimation balances non-negligible costs connected with
acquiring observation� with costs induced by imprecisions of the final
estimate.

Note that

Unlike majority decision tasks with a fixed horizon� h <∞, the
sequential estimation deals with a potentially infinite h.
Testing of hypotheses is a specific case of estimation. Thus, the
subsequent treatment can be applied to it, too.
Sequential estimation was at roots of the theory of statistical decision
functions, we build on [Wal50].

The problem of sequential estimation is formulated in standard
Bayesian way. The generalisation to FPD has not been inspected yet.
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Formalisation of Sequential Estimation

Sequential point estimation can be cast in our framework as follows.

B ≡ [Gt ≡ (Θ,∆t),At ≡ (Θ̂t , st),Kt−1]
[(unknown parameter,observations�),(estimate,stopping flag),data at
disposal].

Admissible strategies consist of rules St : Kt−1
? → (Θ̂?

t , st
?),

Θ? ⊂ Θ̂?, st
? ≡ {stop measuring and estimate Θ, make a new

observation�} ≡ {0, 1},
Loss

Z =

{ ∑
τ≤t c(Kτ−1) + z(Θ, Θ̂t ,Kt−1) if st = 0 & sτ = 1, ∀τ < t∑
τ≤t c(Kτ−1) if sτ = 1 ∀τ ≤ t

(190)
where z(Θ, Θ̂t ,Kt−1) measures a distance of Θ and its estimate Θ̂.
c(Kτ−1) denotes a positive price of τ th observation.
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Optimal Sequential Estimation I

Proposition 35 (Sequential Estimation)

Let us consider the sequential estimation and assume that there is an
admissible strategy for which the expected loss� is finite. The following
inequalities express the sufficient condition for an index t to be the time
moment at which observation should be stopped

E

[(
z(Θ, Θ̂t ,Kt−1)− z(Θ, Θ̂t+k ,Kt+k−1)−

t+k∑
τ>t

c(Kτ−1)

)
|Kt−1

]
≤ 0

∀k = 1, 2, . . . . (191)

In (191), Θ̂t+k , k = 0, 1, 2, . . . denote parameter estimate based on
Kt+k−1 minimising E[z(Θ, Θ̂,Kt+k−1)].

Proof Let (191) be fulfilled. Then, combining the form of the loss
(190), the fact that the optimal stopping time has to be determined using
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Optimal Sequential Estimation II

its knowledge and finiteness of the loss� for the optimal solution we get,
∀k = 1, 2, . . . ,

E

[(
z(Θ, Θ̂t ,Kt−1) +

t∑
τ=1

c(Kτ−1)

)
|Kt−1

]

≤ E

[(
z(Θ, Θ̂t+k ,Kt+k−1) +

t+k∑
τ=1

c(Kτ−1)

)
|Kt−1

]
.

Using isotonicity of the expectation (taken over Kt−1), we find that the
chosen decision cannot be improved by any estimate that uses more
observation�s than the inspected one. �
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Remarks on Sequential Estimation

The implementation of the proposed decision rule requires the
generalised Bayesian estimate (posterior pd) given in Proposition 15.

The ability to evaluate E
[
z(Θ, Θ̂t+k ,Kt+k−1)|Kt−1

]
is decisive for a

practical solvability of the problem.

Stopping rules used for speeding up extensive simulations [RK98]
based on a simple sequential estimation serve as an example of their,
still underestimated, usefulness.

The dependence of the observation price on available knowledge can
be effectively exploited when the sequential estimation is performed in
an inner loop of some optimisation process: the closer we are to the
optimum the lower this price can be. This fact was used, for instance,
in [KH94].
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Multi-Step-Ahead Prediction

Multi-step-ahead prediction extrapolates known data to a more distant
future. This tasks extends one-step-ahead prediction, Example 12, and fits
the considered traditional Bayesian DM as follows.

B ≡ (∆t+j , ∆̂t+j |t−1,Kt−1) ≡
(future observation�s at time t + j , j ≥ 1,prediction of observations at
time t + j ,knowledge at disposal at time t − 1).
Admissible decision rules St : Kt−1

? → ∆̂?
t+j |t−1.

Loss Z(∆t+j , ∆̂t+j |t−1,Kt−1) measures Kt-dependent distance of

∆t+j and ∆̂t+j |t−1.
The basic DM lemma, Proposition 10, the optimal decision rule is
deterministic and generates the optimal point prediction

∆̂t+j |t−1 ∈ Arg min
∆̂∈∆̂?

∫
Z(∆t+j , ∆̂,Kt−1, )f(∆t+j |Kt−1) d∆t+j , (192)

where the predicted ∆t+j is assumed independent of the prediction.

The evaluation of the optimal prediction ∆̂t+j |t−1 (192) requires the
multi-step-ahead predictive pd f(∆t+j |Kt−1).
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Multi-Step-Ahead Predictive Pd

The multi-step-ahead predictive pd is usually constructed from predictive
pd, which may generally depend on other action. For specificity, let the
considered the observation is influenced by system input Ut ∈ Ut

?

generated by a randomised control strategy� f(Ut |Kt−1), t ∈ t?, i.e. the
predictive� pd has the form f(∆t |Ut ,Kt−1), t ∈ t?.
The basic rules for pds, Proposition 5, imply

f(∆t+j |Kt−1) =

∫
f(∆t:t+j ,Ut:t+j |Kt−1) d

(
∆t:t+j−1,Ut:t+j

)
=

∫ t+j∏
τ=t

f(∆τ |Uτ ,Kτ−1)f(uτ |Kτ−1) d
(
∆t:t+j−1,Ut:t+j

)
. (193)
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Remarks on Multi-Step-Ahead Prediction I

The need to know the control strategy� makes the main difference of
this task from one-step-ahead prediction where just knowledge of
input values Ut is sufficient.

The computed marginal pd f(∆t+j |Ut ,Kt−1), j > 1 is in generic case
much flatter than the one-step-ahead predictor. It is seen from the
fact that it is obtained by integration (averaging) over intermediate
predicted values.
This corresponds with common experience that it is much harder (less
reliable) to make a long term prediction. The uncertainty quickly
increases with increasing j .

The integrations over the intermediate quantities is done also over
their values in conditioning. This makes multi-step-ahead prediction a
highly non-linear task.
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Remarks on Multi-Step-Ahead Prediction II

Sometimes, the parametric model� is directly chosen to have the gap
j ≥ 1

f(∆t+j |Θ,Ut+j ,Kt+j−1) = f(∆t+j |Θ,Ut ,Kt−1). (194)

Then, there is no computational and formal difference from the
one-step-ahead prediction. The parametric model and consequently
the prediction quality is of course worse as the assumption (194)
rarely reflects reality.

The predictors of the type (194) are used in connection with adaptive
controllers called MUSMAR [MCG93].
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Filtering Derivatives

Filtering, Proposition 14, provides pds f(Xt |Kt) and f(Xt |At ,Kt−1).
Using basic rules for pds, Proposition 5, it is formally simple to obtain
multi-step-ahead predictors f(Xt+j |At ,Kt−1) similarly as (193).

The fact that we never observe directly time varying Xt calls for a
novel task called smoothing.

smoothing is evaluation of the pd f(Xt−j |Kt) j > 1. using also the
measured data reflecting newer quantities
Its construction is cast in our framework as follows.

B ≡ (Xt−j , X̂t−j |t ,Kt) ≡
(unknown hidden quantity at time t − j , j ≥ 1, smoothed estimate of
Xt−j based on data,data at disposal at time t).

Admissible decision rules are of the form S : Kt
? → X̂ ?

t−j |t .

Loss Z measures Kt-depended distance of Xt−j and X̂t−j |t .
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Optimal Smoothing

The system is assumed to have input the input� Ut (meeting natural
conditions of DM�, (45)), the output� Yt and the state Xt . It is modelled
by the observation model� and state evolution model�. The basic DM
lemma, Proposition 10, provides the optimal estimate

X̂t−j |t ∈ Arg min
X̂∈X̂?

t−j

∫
Z(Xt−j , X̂t−j ,Kt)f(Xt−j |Kt) dXt−j . (195)

The calculus with pds, Proposition 5 and natural conditions of DM� (45)
provide the pd f(Xt−j |Kt) needed in (195):

f(Xt−j |Kt) ∝ f(Xt−j ,Y
t−j+1:t ,Ut−j+1:t |Kt−j )

∝ f(Xt−j |Kt−j )

∫ t∏
τ=t−j+1

f(Yτ |Uτ ,Xτ )f(Xτ |Ut ,Xτ−1) dX t−j+1:t .

The integrand consists of available models with known data inserted.
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Remarks on Smoothing

The result is product of the pd f(Xt−j |Kt−j ), gained by filtering�,
Proposition 14, and the integration result depending on Xt−j .

The filtering represents the main computational burden with
smoothing�.

Generically, the pdf describing smoother is more narrow than the
filtering result. It corresponds with intuition that a good retrospective
estimate of unobserved state based on a wider knowledge is more
precise than a good immediate estimate.
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Multi-Step-Ahead Control and Its Types

Multi-step-ahead controls is the most general dynamic DM task in which
actions are inputs influencing behaviour� including some hidden quantity�.
Unlike one-stage-ahead control, Example 12, multi-step-ahead control
considers horizon� h > 1 and (control) strategy� pushes system outputs Yt

and states Xt to set points sYt and sXt while keeping inputs Ut close to
their reference (set point) sUt for t ∈ t? = {1, . . . , h}. Differences in
available knowledge about set points leads to different control problems.

tracking problem is characterised by uncertain set points, which are
not fully known in beforehand and have to be measured, i.e.
observation� ∆t = (Yt ,

sYt ,
sUt ,

sXt) and modelled by observation
model�.

tracking problem with pre-programming arises whenever some future
set points, say sYt are known beforehand, i.e. knowledge Kt contains
sYτ , τ > t. Thus, modelling of this set point is superfluous.

regulation problem is characterised by known constant set points.
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Multi-Step-Ahead Control, Ist Formalisation & Solution

This tracking problem� is formalised as follows.

B ≡ [Gt ,Ut ,Kt−1] =[ignorance�,action�,knowledge�]
=[(future observations,states),inputs, observations], t ≤ h.

Admissible strategy consists of sequence rules (control laws)
{St : Kt−1

? → ut
?}t∈t? .

Knowledge evolves Kt = (Kt−1,∆t ,Ut) starting from prior one K0

and is quantified by prior pd� f(X0).

Loss Z measures distance of B to set points sY h, sUh, sX h.

The observation model� f(Yt ,
sYt ,

sUt ,
sXt |Ut ,Xt ,Kt−1) and the time

evolution model� are DM elements� needed.

The optimal strategy is described by dynamic programming Proposition 11
exploiting stochastic filtering, Proposition pro:P9�. If an ideal pd� is
specified instead of the loss, the optimal strategy in FPD� sense is
described by Proposition 25.

Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 325 / 393



Remarks on Multi-Step-Ahead Control I

The described general cases covers the situation when we try to
follow evolution of another uncertain object. Rescue/military
interpretations of this case are straightforward. The key message is
that the dynamics of the uncertain target has to be modelled for
finding the optimal strategy.
The situation is simplified whenever target values are (partially)
known. Then the corresponding outer models reduce formally to
Dirac delta functions on a given known support.

The modelling of set points is often neglected and their future
time-invariance implicitly assumed. It corresponds with their
modelling by random walk with time-varying dispersion [Pet84]. Use
of such approximation in a pre-programming problem leads to
worse-than-possible controller.

The optimal controller exploits results of generalised Bayesian
filtering: no point estimate of hidden variables has to be selected.
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Remarks on Multi-Step-Ahead Control II

The special case with unknown time invariant parameters
Θ = Xt = Xt−1 is the central topic of model-based adaptive control
[AW89].

Even adaptive control, which uses parameter estimation, Proposition
15, instead of filtering, suffers generally from computational
complexity (curse of dimensionality): the optimal multi-step-ahead
control has the widest gap between the optimal design and practically
optimal design�. It is rarely analytically or numerically feasible. For
this reason, a lot of heuristic approximation techniques have been
developed. Some of them are discussed in previous text.
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Adaptive predictive LQ control with constraints.
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[KG10] M. Kárný and T.V. Guy.
Preference elicitation in fully probabilistic design of decision
strategies.
In Proc. of the 49th IEEE Conference on Decision and
Control. IEEE, 2010.
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[KH94] M. Kárný and A. Halousková.
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[KN00] M. Kárný and P. Nedoma.
Automatic processing of prior information with application to
identification of regression model.
Kybernetika, 2000.
accepted, never finished.
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Recursive Bayesian estimation under memory limitations.
Kybernetika, 26:1–20, 1990.

[Kul93] R. Kulhavý.
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Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 361 / 393



References XXXIV

[Rao87b] M.M. Rao.
Measure Theory and Integration.
John Wiley, New York, 1987.

[Ren72] A. Renyi.
Probability theory.
Academia, Prague, 1972.
in Czech.

[Rip97] B.D. Ripley.
Pattern Recognition and Neural Networks.
Cambridge University Press, London, 1997.
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Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 378 / 393



List of Terms VIII

likelihood, 116
loss, 45
loss-to-go, 93

mappings, 26
marginal pd, 71
marginalisation, 72
Markov chain, 200
minimum KLD principle, 161
missing data treatment, 260
mixed observations, 186
model of decision rule, 81
model of decision strategy, 81
modelling, 251
mutual information, 256
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Kárný (school@utia.cas.cz, AS, ÚTIA AVČR) Fully Probabilistic Dynamic Decision Making December 2, 2011 384 / 393



List of Terms XIV

timed quantity, 26
tracking problem, 324
tracking problem with pre-programming, 324
traditional design, 64
traditional DM design, 66
triangle inequality, 121

uncertain behaviour, 39
uncertainty, 39
unconditional pd, 71
universal approximation property, 264
unknown parameter, 114
utility, 55

value function, 93
vector length, 26
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1, \1 vector of units, 1
`X , \Cv{X} length of vector X , 1
|X ?|, \S{X} cardinality of X ?, 1
Di , \Di Dirrichlet rnd, 1
D (f||g), \D{\O{f}}{\O{g}} Kullback-Leibler divergence of f on g, 1
E [X ],, \Eu{X} unconditional expectation of X , 1
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Kt−1=KAt , \K{t-1} knowledge of the action At , 1
X , \M{X} mathcal font used for rare symbols, 1
N , \N normal (Gaussian) rnd, 1
X, \O{X} mathsf font reserved for operators, 1
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dX , \d{X} differential of X , \d{X}, 1
X, \fr{X} mathfrakfonts, 1
f (X ), \fu{X} unconditional rnd of X , 1
f (X |Y ), \f{X}{Y} rnd of X conditioned on Y , 1
X ∈ X ?, \is{X} X in the set X ?, 1
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